Excitonic instability and electronic properties of AlSb in the two-dimensional limit

被引:18
作者
Dong, Shan
Li, Yuanchang [1 ]
机构
[1] Beijing Inst Technol, Key Lab Adv Optoelect Quantum Architecture & Meas, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
SEMICONDUCTOR; TRANSITION; MOBILITY;
D O I
10.1103/PhysRevB.104.085133
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by the recent synthesis of two-dimensional monolayer AlSb, we theoretically investigate its ground-state and electronic properties using the first-principles calculations coupled with Bethe-Salpeter equation. An excitonic instability is revealed as a result of larger exciton binding energy than the corresponding one-electron energy gap by similar to 0.1 eV, which is indicative of a many-body ground state accompanied by spontaneous exciton generation. Spin-orbit coupling is proven to play a vital role in the prediction of the ground state. At room temperature, the two-dimensional monolayer AlSb is expected to transform into a direct gap semiconductor with phonon-limited electron and hole mobilities both around 1700 cm(2)/Vs. These results show that monolayer AlSb may provide a promising platform for realization of the excitonic insulator and for applications in the next-generation electronic devices.
引用
收藏
页数:6
相关论文
共 51 条
[1]  
Al Balushi ZY, 2016, NAT MATER, V15, P1166, DOI [10.1038/nmat4742, 10.1038/NMAT4742]
[2]   First-principles calculations for optoelectronic properties of AlSb and GaSb under influence of spin-orbit interaction effect [J].
Ali, M. A. ;
Aleem, H. ;
Sarwar, B. ;
Murtaza, G. .
INDIAN JOURNAL OF PHYSICS, 2020, 94 (04) :477-484
[3]   MODULATION-SPECTROSCOPY STUDY OF THE GA1-XALXSB BAND-STRUCTURE [J].
ALIBERT, C ;
JOULLIE, A ;
JOULLIE, AM ;
ANCE, C .
PHYSICAL REVIEW B, 1983, 27 (08) :4946-4954
[4]   Spectroscopic signatures for the dark Bose-Einstein condensation of spatially indirect excitons [J].
Beian, Mussie ;
Alloing, Mathieu ;
Anankine, Romain ;
Cambril, Edmond ;
Carbonell, Carmen Gomez ;
Lemaitre, Aristide ;
Dubin, Francois .
EPL, 2017, 119 (03)
[5]   Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials [J].
Bernardi, Marco ;
Palummo, Maurizia ;
Grossman, Jeffrey C. .
NANO LETTERS, 2013, 13 (08) :3664-3670
[6]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[7]   Polarity-Reversed Robust Carrier Mobility in Monolayer MoS2 Nanoribbons [J].
Cai, Yongqing ;
Zhang, Gang ;
Zhang, Yong-Wei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (17) :6269-6275
[8]  
Chhowalla M, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats2016.52, 10.1038/natrevmats.2016.52]
[9]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[10]   Titanium Trisulfide Monolayer: Theoretical Prediction of a New Direct-Gap Semiconductor with High and Anisotropic Carrier Mobility [J].
Dai, Jun ;
Zeng, Xiao Cheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (26) :7572-7576