On the self-dual F5-codes constructed from Hadamard matrices of order 24

被引:2
作者
Harada, M [1 ]
机构
[1] Yamagata Univ, Dept Math Sci, Yamagata 9908560, Japan
关键词
self-dual code; F-5-code; Hadamard matrix;
D O I
10.1002/jcd.20021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are exactly 60 inequivalent Hadamard matrices of order 24. In this note, we give a classification of the self-dual F-5-codes of length 48 constructed from the Hadamard matrices of order 24. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:152 / 156
页数:5
相关论文
共 10 条
[1]  
CONWAY JH, 1999, SPHERE PACKING LATTI
[2]  
DAWSON E, 1985, ARS COMBINATORIA, V19A, P303
[3]   On the classification of self-dual codes over F5 [J].
Harada, M ;
Östergård, PRJ .
GRAPHS AND COMBINATORICS, 2003, 19 (02) :203-214
[4]  
HARADA M, UNPUB SOME SELF DUAL, V48
[5]  
HARADA M, 2000, MATH J OKAYAMA U, V40, P15
[6]   CLASSIFICATION OF 3-(24, 12, 5) DESIGNS AND 24-DIMENSIONAL HADAMARD-MATRICES [J].
ITO, N ;
LEON, JS ;
LONGYEAR, JQ .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1981, 31 (01) :66-93
[7]   NEW HADAMARD MATRIX OF ORDER 24 [J].
KIMURA, H .
GRAPHS AND COMBINATORICS, 1989, 5 (03) :235-242
[8]   CLASSIFICATION OF HADAMARD-MATRICES OF ORDER 28 [J].
KIMURA, H .
DISCRETE MATHEMATICS, 1994, 133 (1-3) :171-180
[9]   SELF-DUAL CODES OVER GF(5) [J].
LEON, JS ;
PLESS, V ;
SLOANE, NJA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 32 (02) :178-194
[10]  
Tonchev VD, 1998, HANDBOOK OF CODING THEORY, VOLS I & II, P1229