The Rokhlin property and the tracial topological rank

被引:16
作者
Lin, HX [1 ]
Osaka, H
机构
[1] E China Normal Univ, Dept Math, Shanghai, Peoples R China
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[3] Ritsumeikan Univ, Dept Math Sci, Kusatsu, Shiga 5258577, Japan
基金
日本学术振兴会; 美国国家科学基金会;
关键词
the Rokhlin property; tracial topological rank; simple C*-algebras;
D O I
10.1016/j.jfa.2004.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a unital separable simple C*-algebra with TR(A) less than or equal to 1 and alpha be an automorphism. We show that if a satisfies the tracially cyclic Rokhlin property then TR(A !!(alpha)Z) less than or equal to 1. We also show that whenever A has a unique tracial state and alpha(m) is uniformly outer for each m(not equal0) and alpha(r) is approximately inner for some r>0, a satisfies the tracial cyclic Rokhlin property. By applying the classification theory of nuclear C*-algebras, we use the above result to prove a conjecture of Kishimoto: if A is a unital simple AT-algebra of real rank zero and alphais an element ofAut(A) which is approximately inner and if a satisfies some Rokhlin property, then the crossed product A !!(alpha)Z is again an AT-algebra of real rank zero. As a by-product, we find that one can construct a large class of simple C*-algebras with tracial rank one (and zero) from crossed products. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:475 / 494
页数:20
相关论文
共 18 条
[12]  
KISHIMOTO A, 1995, J REINE ANGEW MATH, V465, P183
[13]   The tracial topological rank of C*-algebras [J].
Lin, HX .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :199-234
[14]   Classification of simple tracially AF C*-algebras [J].
Lin, HX .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (01) :161-194
[15]  
Pimsner M., 1980, J OPERAT THEOR, V4, P93
[16]   CLASSIFICATION OF CERTAIN INFINITE SIMPLE C-ASTERISK-ALGEBRAS [J].
RORDAM, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 131 (02) :415-458
[17]   THE KUNNETH THEOREM AND THE UNIVERSAL COEFFICIENT THEOREM FOR KASPAROV GENERALIZED K-FUNCTOR [J].
ROSENBERG, J ;
SCHOCHET, C .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (02) :431-474
[18]  
[No title captured]