Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients

被引:113
作者
Albeverio, Sergio [2 ,3 ,4 ,5 ,6 ]
Brzezniak, Zdzislaw [7 ]
Wu, Jiang-Lun [1 ]
机构
[1] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[3] Univ Bonn, HCM, D-53115 Bonn, Germany
[4] BiBoS Res Ctr, D-33615 Bielefeld, Germany
[5] CERFIM, Locarno, Switzerland
[6] USI, Acc Arch, Mendrisio, Switzerland
[7] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
关键词
Stochastic differential equations of jump type; Existence and uniqueness; Invariant measures;
D O I
10.1016/j.jmaa.2010.05.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is twofold. Firstly, we investigate the problem of existence and uniqueness of solutions to stochastic differential equations with one sided dissipative drift driven by semi-martingales. Secondly, we investigate the problem of existence of an invariant measure for such equations when the coefficients are time independent. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:309 / 322
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 2007, ENCY MATH ITS APPL
[2]  
[Anonymous], 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720
[3]  
Breiman L., 1968, PROBABILITY
[4]   Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces [J].
Brzezniak, Z ;
Gatarek, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (02) :187-225
[5]  
Brzezniak Z., 2000, METHODS FUNCT ANAL T, V6, P43
[6]  
Brzezniak Z., 2003, Seminaire de Probabilites XXXVII, P251
[7]  
Chojnowska-Michalik A., 1987, STOCHASTICS, V21, P251, DOI DOI 10.1080/17442508708833459
[8]  
Dynkin E., 1956, Theory of Probability and its Applications, V1, P149
[9]  
Dynkin E. B., 1959, TEORIJA VEROJATNOSTE
[10]  
DYNKIN EB, 1961, THEORY MARKOV PROCES