Insight into the Promoting Role of Er Modification on SO2 Resistance for NH3-SCR at Low Temperature over FeMn/TiO2 Catalysts

被引:10
|
作者
Du, Huan [1 ]
Han, Zhitao [1 ,2 ]
Wu, Xitian [1 ]
Li, Chenglong [1 ]
Gao, Yu [1 ]
Yang, Shaolong [3 ]
Song, Liguo [1 ,2 ]
Dong, Jingming [1 ,2 ]
Pan, Xinxiang [1 ,2 ,4 ]
机构
[1] Dalian Maritime Univ, Marine Engn Coll, Dalian 116026, Peoples R China
[2] Dalian Maritime Univ, Marine Engn Coll, Liaoning Res Ctr Marine Internal Combust Engine E, Dalian 116026, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Naval Architecture & Ocean Engn, Wuhan 430074, Peoples R China
[4] Guangdong Ocean Univ, Sch Elect & Informat Technol, Zhanjiang 524088, Peoples R China
基金
中国国家自然科学基金;
关键词
FeMn; TiO2; Er modification; SCR; SO2; resistance; low temperature; MN-CE/AC CATALYST; ENHANCED ACTIVITY; SCR CATALYST; REDUCTION; NO; NH3; PERFORMANCE; OXIDE; H2O; TOLERANCE;
D O I
10.3390/catal11050618
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Er-modified FeMn/TiO2 catalysts were prepared through the wet impregnation method, and their NH3-SCR activities were tested. The results showed that Er modification could obviously promote SO2 resistance of FeMn/TiO2 catalysts at a low temperature. The promoting effect and mechanism were explored in detail using various techniques, such as BET, XRD, H-2-TPR, XPS, TG, and in-situ DRIFTS. The characterization results indicated that Er modification on FeMn/TiO2 catalysts could increase the Mn4+ concentration and surface chemisorbed labile oxygen ratio, which was favorable for NO oxidation to NO2, further accelerating low-temperature SCR activity through the "fast SCR" reaction. As fast SCR reaction could accelerate the consumption of adsorbed NH3 species, it would benefit to restrain the competitive adsorption of SO2 and limit the reaction between adsorbed SO2 and NH3 species. XPS results indicated that ammonium sulfates and Mn sulfates formed were found on Er-modified FeMn/TiO2 catalyst surface seemed much less than those on FeMn/TiO2 catalyst surface, suggested that Er modification was helpful for reducing the generation or deposition of sulfate salts on the catalyst surface. According to in-situ DRIFTS the results of, the presence of SO2 in feeding gas imposed a stronger impact on the NO adsorption than NH3 adsorption on Lewis acid sites of Er-modified FeMn/TiO2 catalysts, gradually making NH3-SCR reaction to proceed in E-R mechanism rather than L-H mechanism.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] SO2 promoted V2O5-MoO3/TiO2 catalyst for NH3-SCR of NOx at low temperatures
    Xu, Yunfan
    Wu, Xiaodong
    Lin, Qiwei
    Hu, Jianfeng
    Ran, Rui
    Weng, Duan
    APPLIED CATALYSIS A-GENERAL, 2019, 570 : 42 - 50
  • [42] The insight into the role of CeO2 in improving low-temperature catalytic performance and SO2 tolerance of MnCoCeOx microflowers for the NH3-SCR of NOx
    Wang, Xinbo
    Duan, Ruibin
    Liu, Wei
    Wang, Dawei
    Wang, Baorui
    Xu, Yurong
    Niu, Cihang
    Shi, Jian-Wen
    APPLIED SURFACE SCIENCE, 2020, 510
  • [43] Effect of barium sulfate modification on the SO2 tolerance of V2O5/TiO2 catalyst for NH3-SCR reaction
    Xu, Tengfei
    Wu, Xiaodong
    Liu, Xuesong
    Cao, Li
    Lino, Qiwei
    Weng, Duan
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2017, 57 : 110 - 117
  • [44] Improving the Performance of Gd Addition on Catalytic Activity and SO2 Resistance over MnOx/ZSM-5 Catalysts for Low-Temperature NH3-SCR
    Guan, Jinkun
    Zhou, Lusha
    Li, Weiquan
    Hu, Die
    Wen, Jie
    Huang, Bichun
    CATALYSTS, 2021, 11 (03) : 1 - 22
  • [45] Effect of barium sulfate modification on the SO2 tolerance of V2O5/TiO2 catalyst for NH3-SCR reaction
    Tengfei Xu
    Xiaodong Wu
    Xuesong Liu
    Li Cao
    Qiwei Lin
    Duan Weng
    Journal of Environmental Sciences, 2017, (07) : 110 - 117
  • [46] A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance
    Xu, Guiying
    Guo, Xiaolong
    Cheng, Xingxing
    Yu, Jian
    Fang, Baizeng
    NANOSCALE, 2021, 13 (15) : 7052 - 7080
  • [47] Enhancing SO2 Resistance of Mn-Ce-Co Loaded Activated Carbon Catalysts for Low-Temperature NH3-SCR: Insight into the Effect of Citrate Addition
    Yang, Mingjie
    Zhu, Yujie
    Wang, Jitong
    Ma, Cheng
    Ling, Licheng
    CHEMISTRYSELECT, 2024, 9 (40):
  • [48] Influence of tungsten on the NH3-SCR activity of MnWOx/TiO2 catalysts
    Lu Peng
    Li Huan
    Liu Huayan
    Chen Yinfei
    Zhang Zekai
    RSC ADVANCES, 2017, 7 (32): : 19771 - 19779
  • [49] Insight into NH3-SCR and H2O/SO2 resistance of Ce modified iron-based catalysts with the presence of arsenic
    Gu, Mengyao
    Guo, Shihao
    Xiong, Zhongpu
    Chen, Juan
    Yao, Hong
    FUEL, 2025, 382
  • [50] Improvement of the activity and SO2 tolerance of Sb-modified Mn/PG catalysts for NH3-SCR at a low temperature
    Xianlong Zhang
    Shuangshuang Lv
    Xincheng Zhang
    Kesong Xiao
    Xueping Wu
    Journal of Environmental Sciences, 2021, (03) : 1 - 15