Population-level faecal metagenomic profiling as a tool to predict antimicrobial resistance in Enterobacterales isolates causing invasive infections: An exploratory study across Cambodia, Kenya, and the UK

被引:12
作者
Auguet, Olga Tosas [1 ]
Niehus, Rene [2 ]
Gweon, Hyun Soon [3 ,4 ]
Berkley, James A. [1 ,5 ,6 ]
Waichungo, Joseph [5 ]
Njim, Tsi [1 ]
Edgeworth, Jonathan D. [7 ]
Batra, Rahul [7 ]
Chau, Kevin [8 ]
Swann, Jeremy [8 ]
Walker, Sarah A. [8 ,9 ]
Peto, Tim E. A. [8 ,9 ]
Crook, Derrick W. [8 ,9 ]
Lamble, Sarah [10 ]
Turner, Paul [1 ,11 ]
Cooper, Ben S. [1 ,12 ]
Stoesser, Nicole [8 ,9 ]
机构
[1] Univ Oxford, Ctr Trop Med & Global Hlth, Oxford, England
[2] Harvard Univ, Harvard TH Chan Sch Publ Hlth, Boston, MA 02115 USA
[3] Univ Reading, Sch Biol Sci, Reading, Berks, England
[4] Ctr Ecol & Hydrol, Wallingford, Oxon, England
[5] KEMRI Wellcome Trust Res Programme, Kilifi, Kenya
[6] Childhood Acute Illness & Nutr CHAIN Network, Nairobi, Kenya
[7] Kings Coll London, Ctr Clin Infect & Diagnost Res CIDR, Dept Infect Dis, London, England
[8] Univ Oxford, Nuffield Dept Med, Oxford, England
[9] NIHR Hlth Protect Res Unit Healthcare Associated, Oxford, England
[10] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
[11] Angkor Hosp Children, Microbiol Dept, Cambodia Oxford Med Res Unit, Siem Reap, Cambodia
[12] Mahidol Univ, Fac Trop Med, Mahidol Oxford Trop Med Res Unit, Bangkok, Thailand
关键词
Antimicrobial resistance surveillance; Metagenomics; Clinical infection; COLONIZATION; SURVEILLANCE; PREVALENCE; RESISTOME; RISK;
D O I
10.1016/j.eclinm.2021.100910
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Antimicrobial resistance (AMR) in Enterobacterales is a global health threat. Capacity for individual-level surveillance remains limited in many countries, whilst population-level surveillance approaches could inform empiric antibiotic treatment guidelines. Methods: In this exploratory study, a novel approach to population-level prediction of AMR in Enterobacterales clinical isolates using metagenomic (Illumina) profiling of pooled DNA extracts from human faecal samples was developed and tested. Taxonomic and AMR gene profiles were used to derive taxonomy-adjusted population-level AMR metrics. Bayesian modelling, and model comparison based on cross-validation, were used to evaluate the capacity of each metric to predict the number of resistant Enterobacterales invasive infections at a population-level, using available bloodstream/cerebrospinal fluid infection data. Findings: Population metagenomes comprised samples from 177, 157, and 156 individuals in Kenya, the UK, and Cambodia, respectively, collected between September 2014 and April 2016. Clinical data from independent populations included 910, 3356 and 197 bacterial isolates from blood/cerebrospinal fluid infections in Kenya, the UK and Cambodia, respectively (samples collected between January 2010 and May 2017). Enterobacterales were common colonisers and pathogens, and faecal taxonomic/AMR gene distributions and proportions of antimicrobial-resistant Enterobacterales infections differed by setting. A model including terms reflecting the metagenomic abundance of the commonest clinical Enterobacterales species, and of AMR genes known to either increase the minimum inhibitory concentration (MIC) or confer clinically-relevant resistance, had a higher predictive performance in determining population-level resistance in clinical Enterobacterales isolates compared to models considering only AMR gene information, only taxonomic information, or an intercept-only baseline model (difference in expected log predictive density compared to best model, estimated using leave-one-out cross-validation: intercept-only model = -223 [95% credible interval (CI): -330,-116]; model considering only AMR gene information = -186 [95% CI: -281,-91]; model considering only taxonomic information = -151 [95% CI: -232,-69]). Interpretation: Whilst our findings are exploratory and require validation, intermittent metagenomics of pooled samples could represent an effective approach for AMR surveillance and to predict population-level AMR in clinical isolates, complementary to ongoing development of laboratory infrastructures processing individual samples. (C) 2021 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:12
相关论文
共 32 条
  • [1] Using sewage for surveillance of antimicrobial resistance
    Aarestrup, Frank M.
    Woolhouse, Mark E. J.
    [J]. SCIENCE, 2020, 367 (6478) : 630 - 632
  • [2] CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database
    Alcock, Brian P.
    Raphenya, Amogelang R.
    Lau, Tammy T. Y.
    Tsang, Kara K.
    Bouchard, Megane
    Edalatmand, Arman
    Huynh, William
    Nguyen, Anna-Lisa, V
    Cheng, Annie A.
    Liu, Sihan
    Min, Sally Y.
    Miroshnichenko, Anatoly
    Tran, Hiu-Ki
    Werfalli, Rafik E.
    Nasir, Jalees A.
    Oloni, Martins
    Speicher, David J.
    Florescu, Alexandra
    Singh, Bhavya
    Faltyn, Mateusz
    Hernandez-Koutoucheva, Anastasia
    Sharma, Arjun N.
    Bordeleau, Emily
    Pawlowski, Andrew C.
    Zubyk, Haley L.
    Dooley, Damion
    Griffiths, Emma
    Maguire, Finlay
    Winsor, Geoff L.
    Beiko, Robert G.
    Brinkman, Fiona S. L.
    Hsiao, William W. L.
    Domselaar, Gary, V
    McArthur, Andrew G.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) : D517 - D525
  • [3] Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles
    Bassis, Christine M.
    Moore, Nicholas M.
    Lolans, Karen
    Seekatz, Anna M.
    Weinstein, Robert A.
    Young, Vincent B.
    Hayden, Mary K.
    [J]. BMC MICROBIOLOGY, 2017, 17
  • [4] Infant diet and maternal gestational weight gain predict early metabolic maturation of gut microbiomes
    Baumann-Dudenhoeffer, Aimee M.
    D'Souza, Alaric W.
    Tarr, Phillip I.
    Warner, Barbara B.
    Dantas, Gautam
    [J]. NATURE MEDICINE, 2018, 24 (12) : 1822 - +
  • [5] Rectal Swabs for Analysis of the Intestinal Microbiota
    Budding, Andries E.
    Grasman, Matthijs E.
    Eck, Anat
    Bogaards, Johannes A.
    Vandenbroucke-Grauls, Christina M. J. E.
    van Bodegraven, Adriaan A.
    Savelkoul, Paul H. M.
    [J]. PLOS ONE, 2014, 9 (07):
  • [6] Stan: A Probabilistic Programming Language
    Carpenter, Bob
    Gelman, Andrew
    Hoffman, Matthew D.
    Lee, Daniel
    Goodrich, Ben
    Betancourt, Michael
    Brubaker, Marcus A.
    Guo, Jiqiang
    Li, Peter
    Riddell, Allen
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01): : 1 - 29
  • [7] Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis
    Collignon, Peter
    Beggs, John J.
    Walsh, Timothy R.
    Gandra, Sumanth
    Laxminarayan, Ramanan
    [J]. LANCET PLANETARY HEALTH, 2018, 2 (09) : E398 - E405
  • [8] Metagenomic insights into the human gut resistome and the forces that shape it
    Forslund, Kristoffer
    Sunagawa, Shinichi
    Coelho, Luis P.
    Bork, Peer
    [J]. BIOESSAYS, 2014, 36 (03) : 316 - 329
  • [9] Country-specific antibiotic use practices impact the human gut resistome
    Forslund, Kristoffer
    Sunagawa, Shinichi
    Kultima, Jens Roat
    Mende, Daniel R.
    Arumugam, Manimozhiyan
    Typas, Athanasios
    Bork, Peer
    [J]. GENOME RESEARCH, 2013, 23 (07) : 1163 - 1169
  • [10] Gelman Andrew, 1992, STAT SCI, V7, P457, DOI [10.1214/ss/1177011136, DOI 10.1214/SS/1177011136]