Genotyping-by-Sequencing (GBS) Revealed Molecular Genetic Diversity of Iranian Wheat Landraces and Cultivars

被引:112
作者
Alipour, Hadi [1 ,2 ,3 ]
Bihamta, Mohammad R. [2 ]
Mohammadi, Valiollah [2 ]
Peyghambari, Seyed A. [2 ]
Bai, Guihua [4 ]
Zhang, Guorong [3 ]
机构
[1] Urmia Univ, Dept Plant Breeding & Biotechnol, Fac Agr, Orumiyeh, Iran
[2] Univ Tehran, Dept Agron & Plant Breeding, Fac Agr, Karaj, Iran
[3] Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA
[4] USDA ARS, Hard Winter Wheat Genet Res Unit, Manhattan, KS USA
来源
FRONTIERS IN PLANT SCIENCE | 2017年 / 8卷
基金
美国食品与农业研究所;
关键词
Iranian wheat landraces; genetic diversity; genotyping-by-sequencing; single nucleotide polymorphism; population structure; GENOME-WIDE ASSOCIATION; STEM RUST RESISTANCE; SPRING WHEAT; HEXAPLOID WHEAT; POLYPLOID WHEAT; BREAD WHEAT; POPULATION-STRUCTURE; CORE COLLECTION; RUSSIAN WHEAT; POLYMORPHISM;
D O I
10.3389/fpls.2017.01293
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Genetic diversity is an essential resource for breeders to improve new cultivars with desirable characteristics. Recently, genotyping-by-sequencing (GBS), a next-generation sequencing (NGS) technology that can simplify complex genomes, has now be used as a high-throughput and cost-effective molecular tool for routine breeding and screening in many crop species, including the species with a large genome. Results: We genotyped a diversity panel of 369 Iranian hexaploid wheat accessions including 270 landraces collected between 1931 and 1968 in different climate zones and 99 cultivars released between 1942 to 2014 using 16,506 GBS-based single nucleotide polymorphism (GBS-SNP) markers. The B genome had the highest number of mapped SNPs while the D genome had the lowest on both the Chinese Spring and W7984 references. Structure and cluster analyses divided the panel into three groups with two landrace groups and one cultivar group, suggesting a high differentiation between landraces and cultivars and between landraces. The cultivar group can be further divided into four subgroups with one subgroup was mostly derived from Iranian ancestor(s). Similarly, landrace groups can be further divided based on years of collection and climate zones where the accessions were collected. Molecular analysis of variance indicated that the genetic variation was larger between groups than within group. Conclusion: Obvious genetic diversity in Iranian wheat was revealed by analysis of GBS-SNPs and thus breeders can select genetically distant parents for crossing in breeding. The diverse Iranian landraces provide rich genetic sources of tolerance to biotic and abiotic stresses, and they can be useful resources for the improvement of wheat production in Iran and other countries.
引用
收藏
页数:14
相关论文
共 84 条
  • [1] The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms.
    Akhunov, ED
    Goodyear, AW
    Geng, S
    Qi, LL
    Echalier, B
    Gill, BS
    Miftahudin
    Gustafson, JP
    Lazo, G
    Chao, SM
    Anderson, OD
    Linkiewicz, AM
    Dubcovsky, J
    La Rota, M
    Sorrells, ME
    Zhang, DS
    Nguyen, HT
    Kalavacharla, V
    Hossain, K
    Kianian, SF
    Peng, JH
    Lapitan, NLV
    Gonzalez-Hernandeiz, JL
    Anderson, JA
    Choi, DW
    Close, TJ
    Dilbirligi, M
    Gill, KS
    Walker-Simmons, MK
    Steber, C
    McGuire, PE
    Qualset, CO
    Dvorak, J
    [J]. GENOME RESEARCH, 2003, 13 (05) : 753 - 763
  • [2] Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes
    Akhunov, Eduard D.
    Akhunova, Alina R.
    Anderson, Olin D.
    Anderson, James A.
    Blake, Nancy
    Clegg, Michael T.
    Coleman-Derr, Devin
    Conley, Emily J.
    Crossman, Curt C.
    Deal, Karin R.
    Dubcovsky, Jorge
    Gill, Bikram S.
    Gu, Yong Q.
    Hadam, Jakub
    Heo, Hwayoung
    Huo, Naxin
    Lazo, Gerard R.
    Luo, Ming-Cheng
    Ma, Yaqin Q.
    Matthews, David E.
    McGuire, Patrick E.
    Morrell, Peter L.
    Qualset, Calvin O.
    Renfro, James
    Tabanao, Dindo
    Talbert, Luther E.
    Tian, Chao
    Toleno, Donna M.
    Warburton, Marilyn L.
    You, Frank M.
    Zhang, Wenjun
    Dvorak, Jan
    [J]. BMC GENOMICS, 2010, 11
  • [3] Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.)
    Allen, Alexandra M.
    Barker, Gary L. A.
    Wilkinson, Paul
    Burridge, Amanda
    Winfield, Mark
    Coghill, Jane
    Uauy, Cristobal
    Griffiths, Simon
    Jack, Peter
    Berry, Simon
    Werner, Peter
    Melichar, James P. E.
    McDougall, Jane
    Gwilliam, Rhian
    Robinson, Phil
    Edwards, Keith J.
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2013, 11 (03) : 279 - 295
  • [4] Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.)
    Allen, Alexandra M.
    Barker, Gary L. A.
    Berry, Simon T.
    Coghill, Jane A.
    Gwilliam, Rhian
    Kirby, Susan
    Robinson, Phil
    Brenchley, Rachel C.
    D'Amore, Rosalinda
    McKenzie, Neil
    Waite, Darren
    Hall, Anthony
    Bevan, Michael
    Hall, Neil
    Edwards, Keith J.
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2011, 9 (09) : 1086 - 1099
  • [5] Amin H., 2010, SEED PLANT IMPROV J, V26, P289
  • [6] [Anonymous], 2001, BROADENING GENETIC B
  • [7] [Anonymous], 2009, GLOBAL AGR 2050
  • [8] [Anonymous], WHEAT GENETIC RESOUR
  • [9] Batley J., 2007, Association mapping in plants, P95, DOI 10.1007/978-0-387-36011-9_6
  • [10] Dispersion and domestication shaped the genome of bread wheat
    Berkman, Paul J.
    Visendi, Paul
    Lee, Hong C.
    Stiller, Jiri
    Manoli, Sahana
    Lorenc, Michal T.
    Lai, Kaitao
    Batley, Jacqueline
    Fleury, Delphine
    Simkova, Hana
    Kubalakova, Marie
    Song Weining
    Dolezel, Jaroslav
    Edwards, David
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2013, 11 (05) : 564 - 571