Relationship between osmotic stress-induced abscisic acid accumulation, biomass production and plant growth in drought-tolerant and -sensitive wheat cultivars

被引:17
作者
Guoth, Adrienn [1 ]
Benyo, Daniel [1 ]
Csiszar, Jolan [1 ]
Galle, Agnes [1 ]
Horvath, Ferenc [1 ]
Cseuz, Laszlo [2 ]
Erdei, Laszlo [1 ]
Tari, Irma [1 ]
机构
[1] Univ Szeged, Dept Plant Biol, H-6701 Szeged, Hungary
[2] Cereal Res Nonprofit Co, H-6701 Szeged, Hungary
关键词
Abscisic acid contents; Biomass distribution; Osmotic stress; Photosynthetic characteristics; Wheat cultivars; PHOTOSYNTHETIC ELECTRON-TRANSPORT; CHLOROPHYLL FLUORESCENCE; STOMATAL CONDUCTANCE; WATER-STRESS; BARLEY GENOTYPES; QUANTUM YIELD; GAS-EXCHANGE; PRIMARY ROOT; ABA; RESPONSES;
D O I
10.1007/s11738-009-0453-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The effects of increasing osmotic stress induced by 100-400 mOsm (-0.976 MPa) polyethylene glycol (PEG 6000) were investigated in a drought-tolerant (Triticum aestivum L. cv. Mv Emese) and drought-sensitive (cv. GK A parts per thousand let) wheat cultivar at the three-leaf stage. During osmotic stress, the decline of the water potential (psi (w)) was more significant in the leaves, while the abscisic acid (ABA) levels of the roots increased earlier and remained higher in the sensitive than in the tolerant variety. There was an increasing gradient of ABA content toward the youngest leaves in the drought-sensitive GK A parts per thousand let, while more ABA accumulated in the fully developed, older leaves of the tolerant cultivar Mv Emese. In accordance with the rapid and significant accumulation of ABA, the stomatal conductance decreased earlier in the tolerant cultivar. The effect of water stress on the PSII photochemistry was pronounced only 1 week after the exposure to PEG, as indicated by the earlier decrease of the net CO2 fixation, the effective quantum yield (I broken vertical bar(PSII)) and the photochemical quenching (q (P)) in light-adapted samples of the tolerant variety in 400 mOsm PEG 6000. The stress treatment caused more significant reductions in these parameters toward the end of the experiment in the sensitive cultivar. In spite of small differences in the photosynthetic characteristics, the net biomass production was not significantly altered by this osmotic stress. The accumulation of ABA controlled the distribution of the biomass between the shoot and root systems under osmotic stress, and contributed to the development of stronger and deeper roots in the drought-sensitive cultivar GK A parts per thousand let. However, the root elongation did not correlate with the drought sensitivity of these cultivars on the basis of crop yield.
引用
收藏
页码:719 / 727
页数:9
相关论文
共 42 条