Contact force tracking of quadrotors based on robust attitude control

被引:15
作者
Izaguirre-Espinosa, Carlos [1 ]
Munoz-Vazquez, Aldo-Jonathan [2 ]
Sanchez-Orta, Anand [3 ]
Parra-Vega, Vicente [3 ]
Castillo, Pedro [4 ]
机构
[1] Monterrey Inst Technol & Higher Educ ITESM, Campus Sonora Norte, Hermosillo, Sonora, Mexico
[2] Polytech Univ Victoria UPV, Ciudad Victoria, Mexico
[3] CINVESTAV, Res Ctr Adv Studies, Robot & Adv Mfg Div, Saltillo, Coahuila, Mexico
[4] Univ Technol Compiegne, Sorbonne Univ, CNRS UMR Heudiasyc Lab 7253, CS 60319, F-60203 Compiegne, France
关键词
Quadrotor UAV; Force control; Fractional-order control; Sliding mode control; SLIDING-MODE CONTROL; NONLINEAR-SYSTEMS; DC DRIVES; SUPPRESSION; DESIGN;
D O I
10.1016/j.conengprac.2018.06.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Quadrotors are autonomous aerial vehicles widely developed in the last decade due to their small size, low weight and vertical take off and landing capabilities. Nowadays, some demanding applications involve the quadrotor interacting with rigid objects, requiring stable contact and force tracking. In this paper, an attitude control is proposed to handle force tracking by exploiting the high couplings among force, position and attitude dynamics. The proposed controller enforces a fractional sliding motion in finite-time to guarantee robust force tracking stabilisation in spite of disturbances and dynamical uncertainties. Experiments show additional theoretical and technological features to incorporate this flight mode in applications.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 30 条
[1]  
[Anonymous], 1998, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications
[2]   Achievable Performance Region for a Fractional-Order Proportional and Derivative Motion Controller [J].
Badri, Vahid ;
Tavazoei, Mohammad Saleh .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2015, 62 (11) :7171-7180
[3]   Second-order sliding-mode control of DC drives [J].
Damiano, A ;
Gatto, GL ;
Marongiu, I ;
Pisano, A .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004, 51 (02) :364-373
[4]   Stability of quantized time-delay nonlinear systems: a Lyapunov-Krasowskii-functional approach [J].
De Persis, Claudio ;
Mazenc, Frederic .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2010, 21 (04) :337-370
[5]   Trajectory Tracking Control for a 3-DOF Parallel Manipulator Using Fractional-Order PIλDμ Control [J].
Dumlu, Ahmet ;
Erenturk, Koksal .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (07) :3417-3426
[6]   Fractional-Order PIλDμ and Active Disturbance Rejection Control of Nonlinear Two-Mass Drive System [J].
Erenturk, Koksal .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (09) :3806-3813
[7]  
Etkin B., 1959, Dynamics of flight, V2
[8]   DYNAMIC OPTIMAL GRASPING OF A CIRCULAR OBJECT WITH GRAVITY USING ROBOTIC SOFT-FINGERTIPS [J].
Garcia-Rodriguez, Rodolfo ;
Segovia-Palacios, Victor ;
Parra-Vega, Vicente ;
Villalva-Lucio, Marco .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2016, 26 (02) :309-323
[9]   ON THE USE OF THE WEIERSTRASS-MANDELBROT FUNCTION TO DESCRIBE THE FRACTAL COMPONENT OF TURBULENT VELOCITY [J].
HUMPHREY, JAC ;
SCHULER, CA ;
RUBINSKY, B .
FLUID DYNAMICS RESEARCH, 1992, 9 (1-3) :81-95
[10]   Fractional attitude-reactive control for robust quadrotor position stabilization without resolving underactuation [J].
Izaguirre-Espinosa, C. ;
Munoz-Vazquez, A. J. ;
Sanchez-Orta, A. ;
Parra-Vega, V. ;
Sanahuja, G. .
CONTROL ENGINEERING PRACTICE, 2016, 53 :47-56