Relativistic Green functions in a plane-wave gravitational background

被引:5
作者
Vaidya, A. N. [1 ]
Farina, C. [1 ]
Guimaraes, M. S. [1 ]
Neves, M. J. [1 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, Brazil
关键词
D O I
10.1088/1751-8113/40/30/032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a massive relativistic particle in the background of a gravitational plane wave. The corresponding Green functions for both spinless and spin-1 2 cases, previously computed by Barducci and Giachetti (2005 J. Phys. A: Math. Gen. 38 1615), are reobtained here by alternative methods, as for example, the Fock-Schwinger proper-time method and the algebraic method. In analogy with the electromagnetic case, we show that for a gravitational plane- wave background a semiclassical approach is also sufficient to provide the exact result, though the Lagrangian involved is far from being a quadratic one.
引用
收藏
页码:9149 / 9164
页数:16
相关论文
共 25 条
[1]   EXACT SOLUTION FOR QUANTUM-THEORY OF A MATERIAL POINT IN AN EXTERNAL LINEARIZED GRAVITATIONAL-WAVE FIELD [J].
BARDUCCI, A ;
GIACHETTI, R .
LETTERE AL NUOVO CIMENTO, 1976, 15 (09) :309-313
[2]   Scalar and spinning particles in an external linearized gravitational wave field [J].
Barducci, A ;
Giachetti, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (07) :1615-1624
[3]   Scalar and spinning particles in a plane-wave field [J].
Barducci, A ;
Giachetti, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (29) :8129-8140
[4]   Three methods for calculating the Feynman propagator [J].
Barone, FA ;
Boschi, H ;
Farina, C .
AMERICAN JOURNAL OF PHYSICS, 2003, 71 (05) :483-491
[5]  
BOSCHIFILHO H, 1996, PHYS LETT A, V184, P23
[6]   Dirac particle in a plane wave field and the semi-classical approximation [J].
Bourouaine, S .
ANNALEN DER PHYSIK, 2005, 14 (04) :207-213
[7]   INVARIANTS AND GREENS FUNCTIONS OF A RELATIVISTIC CHARGED-PARTICLE IN ELECTROMAGNETIC-FIELDS [J].
DODONOV, VV ;
MALKIN, IA ;
MANKO, VI .
LETTERE AL NUOVO CIMENTO, 1975, 14 (07) :241-244
[8]  
DODONOV VV, 1976, J PHYS A, V215, P1791
[9]  
DODONOV VV, 1976, PHYSICA, V82, P13
[10]   SCHWINGER METHOD FOR A HARMONIC-OSCILLATOR WITH A TIME-DEPENDENT FREQUENCY [J].
FARINA, C ;
SEGUISANTONJA, AJ .
PHYSICS LETTERS A, 1993, 184 (01) :23-28