A renormalization group fixed point associated with the breakup of golden invariant tori

被引:42
作者
Koch, H [1 ]
机构
[1] Univ Texas, Dept Math, Austin, TX 78712 USA
关键词
D O I
10.3934/dcds.2004.11.881
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a computer-assisted proof for the existence of a renormalization group fixed point (Hamiltonian) with non-trivial scaling, associated with the breakup of invariant tori with rotation number equal to the golden mean.
引用
收藏
页码:881 / 909
页数:29
相关论文
共 34 条
[1]  
ADAD JJ, 1998, RENORMALIZATION GROU, V11, P1185
[2]  
ADAD JJ, 2000, COMMUN MATH PHYS, V212, P371
[3]   BREAKDOWN OF UNIVERSALITY IN RENORMALIZATION DYNAMICS FOR CRITICAL INVARIANT TORUS [J].
ARTUSO, R ;
CASATI, G ;
SHEPELYANSKY, DL .
EUROPHYSICS LETTERS, 1991, 15 (04) :381-386
[4]   Approximate renormalization-group transformation for Hamiltonian systems with three degrees of freedom [J].
Chandre, C ;
Jauslin, HR ;
Benfatto, G ;
Celletti, A .
PHYSICAL REVIEW E, 1999, 60 (05) :5412-5421
[5]   Approximate renormalization with codimension-one fixed point for the break-up of some three-frequency tori [J].
Chandre, C ;
MacKay, RS .
PHYSICS LETTERS A, 2000, 275 (5-6) :394-400
[6]   Universality for the breakup of invariant tori in Hamiltonian flows [J].
Chandre, C ;
Govin, M ;
Jauslin, HR ;
Koch, H .
PHYSICAL REVIEW E, 1998, 57 (06) :6612-6617
[7]   Renormalization-group analysis for the transition to chaos in Hamiltonian systems [J].
Chandre, C ;
Jauslin, HR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 365 (01) :1-64
[8]   Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom [J].
Chandre, C .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2002, 2 (03) :457-465
[9]   Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems [J].
Chandre, C ;
Govin, M ;
Jauslin, HR .
PHYSICAL REVIEW E, 1998, 57 (02) :1536-1543
[10]   Area preserving nontwist maps: Periodic orbits and transition to chaos [J].
delCastilloNegrete, D ;
Greene, JM ;
Morrison, PJ .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 91 (1-2) :1-23