OPERATOR INEQUALITIES AMONG ARITHMETIC MEAN, GEOMETRIC MEAN AND HARMONIC MEAN

被引:8
作者
Furuichi, Shigeru [1 ]
机构
[1] Nihon Univ, Coll Humanities & Sci, Dept Informat Sci, Setagaya Ku, Tokyo 1568550, Japan
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2014年 / 8卷 / 03期
关键词
Operator inequality; operator mean; HILBERT-SPACE;
D O I
10.7153/jmi-08-49
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an upper bound for the weighted geometric mean using the weighted arithmetic mean and the weighted harmonic mean. We also give a lower bound for the weighted geometric mean. These inequalities are proven for two invertible positive operators.
引用
收藏
页码:669 / 672
页数:4
相关论文
共 7 条
[1]  
Furuichi S., 2012, Journal of the Egyptian Mathematical Society, V20, P46, DOI DOI 10.1016/J.J0EMS.2011.12.010
[2]   ON REFINED YOUNG INEQUALITIES AND REVERSE INEQUALITIES [J].
Furuichi, Shigeru .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (01) :21-31
[3]   Generalized means and convexity of inversion for positive operators [J].
Furuta, T ;
Yanagida, M .
AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (03) :258-259
[4]   Improved arithmetic-geometric and Heinz means inequalities for Hilbert space operators [J].
Kittaneh, Fuad ;
Krnic, Mario ;
Lovricevic, Neda ;
Pecaric, Josip .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (3-4) :465-478
[5]  
Krnic M, 2012, B MALAYS MATH SCI SO, V35, P1
[6]   MEANS OF POSITIVE LINEAR-OPERATORS [J].
KUBO, F ;
ANDO, T .
MATHEMATISCHE ANNALEN, 1980, 246 (03) :205-224
[7]   REFINED YOUNG INEQUALITY WITH KANTOROVICH CONSTANT [J].
Zuo, Hongliang ;
Shi, Guanghua ;
Fujii, Masatoshi .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2011, 5 (04) :551-556