Evaluating Pruned Object Detection Networks for Real-Time Robot Vision

被引:0
作者
O'Keeffe, Simon [1 ]
Villing, Rudi [1 ]
机构
[1] Maynooth Univ, Dept Elect Engn, Maynooth, Kildare, Ireland
来源
2018 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC) | 2018年
关键词
Convolutional Neural Networks; object detection; real-time; pruning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional Neural Networks are the state of the art for computer vision problems such as classification and detection. Networks like YOLO and SSD have demonstrated excellent results on benchmark datasets such as the PASCAL VOC and COCO datasets. However these networks only run at real time with the support of powerful GPUs and are infeasible for use in low power embedded real-time robotic applications. Pruning has been shown to be an efficient technique for reducing the runtime computational cost of a neural network while maintaining performance in image classification tasks. In this work we evaluate the efficacy of pruning on the problem of object detection using a modified tiny-YOLO network. The network was trained on a custom object detection task and three pruning techniques were evaluated, including our contribution which specifically targets reducing the FLOPS in the network. The results show that pruning with our method followed by extended fine-tuning achieved a 4.5x reduction in FLOPS and a 7x reduction in parameters with no drop in accuracy.
引用
收藏
页码:91 / 96
页数:6
相关论文
共 30 条
[1]  
[Anonymous], Darknet: Open source neural networks in C
[2]  
[Anonymous], 2016, ECCV, DOI DOI 10.1007/978-3-319-46493-0_32
[3]  
[Anonymous], 2013, CoRR
[4]   Structured Pruning of Deep Convolutional Neural Networks [J].
Anwar, Sajid ;
Hwang, Kyuyeon ;
Sung, Wonyong .
ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2017, 13 (03)
[5]  
Apte M., YOLO NET ON IOS
[6]   Histograms of oriented gradients for human detection [J].
Dalal, N ;
Triggs, B .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :886-893
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[9]  
Girshick R., 2014, P IEEE C COMP VIS PA, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81, 10.1109/cvpr.2014.81]
[10]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448