Lightweight Detection Network for Arbitrary-Oriented Vehicles in UAV Imagery via Global Attentive Relation and Multi-Path Fusion

被引:21
作者
Feng, Jiangfan [1 ]
Yi, Chengjie [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
UAVs; vehicle detection; lightweight model; deep neural networks; remote sensing; OBJECT DETECTION;
D O I
10.3390/drones6050108
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Recent advances in unmanned aerial vehicles (UAVs) have increased altitude capability in road-traffic monitoring. However, state-of-the-art vehicle detection methods still lack accurate abilities and lightweight structures in the UAV platform due to the background uncertainties, scales, densities, shapes, and directions of objects resulting from the UAV imagery's shooting angle. We propose a lightweight solution to detect arbitrary-oriented vehicles under uncertain backgrounds, varied resolutions, and illumination conditions. We first present a cross-stage partial bottleneck transformer (CSP BoT) module to exploit the global spatial relationship captured by multi-head self-attention, validating its implication in recessive dependencies. We then propose an angle classification prediction branch in the YOLO head network to detect arbitrarily oriented vehicles in UAV images and employ a circular smooth label (CSL) to reduce the classification loss. We further improve the multi-scale feature maps by combining the prediction head network with the adaptive spatial feature fusion block (ASFF-Head), which adapts the spatial variation of prediction uncertainties. Our method features a compact, lightweight design that automatically recognizes key geometric factors in the UAV images. It demonstrates superior performance under environmental changes while it is also easy to train and highly generalizable. This remarkable learning ability makes the proposed method applicable to geometric structure and uncertainty estimates. Extensive experiments on the UAV vehicle dataset UAV-ROD and remote sensing dataset UACS-AOD demonstrate the superiority and cost-effectiveness of the proposed method, making it practical for urban traffic and public security.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] [Anonymous], Ultralytics YOLOv5
  • [2] Attention Augmented Convolutional Networks
    Bello, Irwan
    Zoph, Barret
    Vaswani, Ashish
    Shlens, Jonathon
    Le, Quoc V.
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3285 - 3294
  • [3] Bochkovskiy A., 2020, ARXIV 200410934
  • [4] Dai J., 2016, arXiv
  • [5] Learning RoI Transformer for Oriented Object Detection in Aerial Images
    Ding, Jian
    Xue, Nan
    Long, Yang
    Xia, Gui-Song
    Lu, Qikai
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 2844 - 2853
  • [6] Dosovitskiy A., 2020, INT C LEARN REPR
  • [7] Sigmoid-weighted linear units for neural network function approximation in reinforcement learning
    Elfwing, Stefan
    Uchibe, Eiji
    Doya, Kenji
    [J]. NEURAL NETWORKS, 2018, 107 : 3 - 11
  • [8] Elloumi M, 2018, IEEE WCNC
  • [9] Feng K., 2021, ARXIV
  • [10] Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) : 1904 - 1916