Mirror symmetry and CX

被引:1
作者
Takahashi, N [1 ]
机构
[1] Hiroshima Univ, Dept Math, Higashihiroshima 7398526, Japan
关键词
D O I
10.1090/S0002-9939-00-05901-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that counting functions of covers of C-X are equal to sums of integrals associated to certain `Feynman' graphs. This is an analogue of the mirror symmetry for elliptic curves.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 8 条
[1]  
DIJKGRAAF R, 1995, PROG MATH, V129, P149
[2]   A proof of a conjecture for the number of ramified coverings of the sphere by the torus [J].
Goulden, IP ;
Jackson, DM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 88 (02) :246-258
[3]   The number of ramified coverings of the sphere by the double torus, and a general form for higher genera [J].
Goulden, IP ;
Jackson, DM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 88 (02) :259-275
[4]  
OKOUNKOV A, TODA EQUATIONS HURWI
[5]  
Shapiro B., 1997, AM MATH SOC TRANSL 2, V34, P219
[6]  
TAKAHASHI N, IN PRESS COMMUN MATH
[7]  
TAKAHASHI N, ALGGEOM9605007
[8]  
VAKIL R, MATHCO9812105