Nanofluidics in two-dimensional layered materials: inspirations from nature

被引:265
作者
Gao, Jun [1 ]
Feng, Yaping [2 ,3 ]
Guo, Wei [2 ,3 ]
Jiang, Lei [2 ,3 ]
机构
[1] Univ Twente, Phys Complex Fluids, NL-7500 Enschede, Netherlands
[2] Chinese Acad Sci, Tech Inst Phys & Chem, CAS Key Lab Bio inspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAPHENE OXIDE MEMBRANES; SOLID-STATE NANOPORES; SELECTIVE ION-TRANSPORT; CONCENTRATION-GRADIENT; HIGH-PERFORMANCE; POWER-GENERATION; WATER TRANSPORT; REVERSE ELECTRODIALYSIS; CURRENT RECTIFICATION; ENERGY-CONVERSION;
D O I
10.1039/c7cs00369b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the advance of chemistry, materials science, and nanotechnology, significant progress has been achieved in the design and application of synthetic nanofluidic devices and materials, mimicking the gating, rectifying, and adaptive functions of biological ion channels. Fundamental physics and chemistry behind these novel transport phenomena on the nanoscale have been explored in depth on single-pore platforms. However, toward real-world applications, one major challenge is to extrapolate these singlepore devices into macroscopic materials. Recently, inspired partially by the layered microstructure of nacre, the material design and large-scale integration of artificial nanofluidic devices have stepped into a completely new stage, termed 2D nanofluidics. Unique advantages of the 2D layered materials have been found, such as facile and scalable fabrication, high flux, efficient chemical modification, tunable channel size, etc. These features enable wide applications in, for example, biomimetic ion transport manipulation, molecular sieving, water treatment, and nanofluidic energy conversion and storage. This review highlights the recent progress, current challenges, and future perspectives in this emerging research field of `` 2D nanofluidics'', with emphasis on the thought of bio-inspiration.
引用
收藏
页码:5400 / 5424
页数:25
相关论文
共 180 条
[71]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[72]   Enhanced energy harvesting by concentration gradient-driven ion transport in SBA-15 mesoporous silica thin films [J].
Hwang, Junho ;
Kataoka, Sho ;
Endo, Akira ;
Daiguji, Hirofumi .
LAB ON A CHIP, 2016, 16 (19) :3824-3832
[73]   Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets [J].
Jeon, Mi Young ;
Kim, Donghun ;
Kumar, Prashant ;
Lee, Pyung Soo ;
Rangnekar, Neel ;
Bai, Peng ;
Shete, Meera ;
Elyassi, Bahman ;
Lee, Han Seung ;
Narasimharao, Katabathini ;
Basahel, Sulaiman Nasir ;
Al-Thabaiti, Shaeel ;
Xu, Wenqian ;
Cho, Hong Je ;
Fetisov, Evgenii O. ;
Thyagarajan, Raghuram ;
DeJaco, Robert F. ;
Fan, Wei ;
Mkhoyan, K. Andre ;
Siepmann, J. Ilja ;
Tsapatsis, Michael .
NATURE, 2017, 543 (7647) :690-+
[74]   Osmotic Power Generation with Positively and Negatively Charged 2D Nanofluidic Membrane Pairs [J].
Ji, Jinzhao ;
Kang, Qian ;
Zhou, Yi ;
Feng, Yaping ;
Chen, Xi ;
Yuan, Jinying ;
Guo, Wei ;
Wei, Yen ;
Jiang, Lei .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (02)
[75]   Nanopore-based sensing and analysis: beyond the resistive-pulse method [J].
Jiang, Yanan ;
Guo, Wei .
SCIENCE BULLETIN, 2015, 60 (05) :491-502
[76]   Mechanical exfoliation of track-etched two-dimensional layered materials for the fabrication of ultrathin nanopores [J].
Jiang, Yanan ;
Gao, Jun ;
Guo, Wei ;
Jiang, Lei .
CHEMICAL COMMUNICATIONS, 2014, 50 (91) :14149-14152
[77]   Highly-Efficient Gating of Solid-State Nanochannels by DNA Supersandwich Structure Containing ATP Aptamers: A Nanofluidic IMPLICATION Logic Device [J].
Jiang, Yanan ;
Liu, Nannan ;
Guo, Wei ;
Xia, Fan ;
Jiang, Lei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (37) :15395-15401
[78]   Graphene oxide: the new membrane material [J].
Joshi, R. K. ;
Alwarappan, S. ;
Yoshimura, M. ;
Sahajwalla, V. ;
Nishina, Y. .
APPLIED MATERIALS TODAY, 2015, 1 (01) :1-12
[79]   Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes [J].
Joshi, R. K. ;
Carbone, P. ;
Wang, F. C. ;
Kravets, V. G. ;
Su, Y. ;
Grigorieva, I. V. ;
Wu, H. A. ;
Geim, A. K. ;
Nair, R. R. .
SCIENCE, 2014, 343 (6172) :752-754
[80]   Nanofluidic bipolar transistors [J].
Kalman, Eric B. ;
Vlassiouk, Ivan ;
Siwy, Zuzanna S. .
ADVANCED MATERIALS, 2008, 20 (02) :293-+