Nanofluidics in two-dimensional layered materials: inspirations from nature

被引:251
作者
Gao, Jun [1 ]
Feng, Yaping [2 ,3 ]
Guo, Wei [2 ,3 ]
Jiang, Lei [2 ,3 ]
机构
[1] Univ Twente, Phys Complex Fluids, NL-7500 Enschede, Netherlands
[2] Chinese Acad Sci, Tech Inst Phys & Chem, CAS Key Lab Bio inspired Mat & Interfacial Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAPHENE OXIDE MEMBRANES; SOLID-STATE NANOPORES; SELECTIVE ION-TRANSPORT; CONCENTRATION-GRADIENT; HIGH-PERFORMANCE; POWER-GENERATION; WATER TRANSPORT; REVERSE ELECTRODIALYSIS; CURRENT RECTIFICATION; ENERGY-CONVERSION;
D O I
10.1039/c7cs00369b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the advance of chemistry, materials science, and nanotechnology, significant progress has been achieved in the design and application of synthetic nanofluidic devices and materials, mimicking the gating, rectifying, and adaptive functions of biological ion channels. Fundamental physics and chemistry behind these novel transport phenomena on the nanoscale have been explored in depth on single-pore platforms. However, toward real-world applications, one major challenge is to extrapolate these singlepore devices into macroscopic materials. Recently, inspired partially by the layered microstructure of nacre, the material design and large-scale integration of artificial nanofluidic devices have stepped into a completely new stage, termed 2D nanofluidics. Unique advantages of the 2D layered materials have been found, such as facile and scalable fabrication, high flux, efficient chemical modification, tunable channel size, etc. These features enable wide applications in, for example, biomimetic ion transport manipulation, molecular sieving, water treatment, and nanofluidic energy conversion and storage. This review highlights the recent progress, current challenges, and future perspectives in this emerging research field of `` 2D nanofluidics'', with emphasis on the thought of bio-inspiration.
引用
收藏
页码:5400 / 5424
页数:25
相关论文
共 180 条
  • [41] Sensing at the Surface of Graphene Field-Effect Transistors
    Fu, Wangyang
    Jiang, Lin
    van Geest, Erik P.
    Lima, Lia M. C.
    Schneider, Gregory F.
    [J]. ADVANCED MATERIALS, 2017, 29 (06)
  • [42] Sub-additive ionic transport across arrays of solid-state nanopores
    Gadaleta, A.
    Sempere, C.
    Gravelle, S.
    Siria, A.
    Fulcrand, R.
    Ybert, C.
    Bocquet, L.
    [J]. PHYSICS OF FLUIDS, 2014, 26 (01)
  • [43] High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation
    Gao, Jun
    Guo, Wei
    Feng, Dan
    Wang, Huanting
    Zhao, Dongyuan
    Jiang, Lei
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (35) : 12265 - 12272
  • [44] Layer-by-layer removal of insulating few-layer mica flakes for asymmetric ultra-thin nanopore fabrication
    Gao, Jun
    Guo, Wei
    Geng, Hua
    Hou, Xu
    Shuai, Zhigang
    Jiang, Lei
    [J]. NANO RESEARCH, 2012, 5 (02) : 99 - 108
  • [45] Ozonated Graphene Oxide Film as a Proton-Exchange Membrane
    Gao, Wei
    Wu, Gang
    Janicke, Michael T.
    Cullen, David A.
    Mukundan, Rangachary
    Baldwin, Jon K.
    Brosha, Eric L.
    Galande, Charudatta
    Ajayan, Pulickel M.
    More, Karren L.
    Dattelbaum, Andrew M.
    Zelenay, Piotr
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (14) : 3588 - 3593
  • [46] Gao W, 2011, NAT NANOTECHNOL, V6, P496, DOI [10.1038/NNANO.2011.110, 10.1038/nnano.2011.110]
  • [47] Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]
  • [48] Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications
    Georgakilas, Vasilios
    Otyepka, Michal
    Bourlinos, Athanasios B.
    Chandra, Vimlesh
    Kim, Namdong
    Kemp, K. Christian
    Hobza, Pavel
    Zboril, Radek
    Kim, Kwang S.
    [J]. CHEMICAL REVIEWS, 2012, 112 (11) : 6156 - 6214
  • [49] MoS2/Celgard Separator as Efficient Polysulfide Barrier for Long-Life Lithium-Sulfur Batteries
    Ghazi, Zahid Ali
    He, Xiao
    Khattak, Abdul Muqsit
    Khan, Niaz Ali
    Liang, Bin
    Iqbal, Azhar
    Wang, Jinxin
    Sin, Haksong
    Li, Lianshan
    Tang, Zhiyong
    [J]. ADVANCED MATERIALS, 2017, 29 (21)
  • [50] High Energy Conversion Efficiency in Nanofluidic Channels
    Gillespie, Dirk
    [J]. NANO LETTERS, 2012, 12 (03) : 1410 - 1416