Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review

被引:153
作者
Dzobo, Kevin [1 ,2 ,3 ]
Motaung, Keolebogile Shirley Caroline M. [4 ]
Adesida, Adetola [5 ]
机构
[1] ICGEB, Wernher & Beit Bldg South,UCT Med Campus,Anzio Rd, ZA-7925 Cape Town, South Africa
[2] Univ Cape Town, Fac Hlth Sci, Div Med Biochem, Anzio Rd, ZA-7925 Cape Town, South Africa
[3] Univ Cape Town, Fac Hlth Sci, Inst Infect Dis & Mol Med, Anzio Rd, ZA-7925 Cape Town, South Africa
[4] Tshwane Univ Technol, Fac Sci, Dept Biomed Sci, ZA-30655 Pretoria, South Africa
[5] Univ Alberta, Li Ka Shing Ctr Hlth Res Innovat, Fac Med & Dent, Dept Surg, Edmonton, AB T6G 2E1, Canada
基金
新加坡国家研究基金会;
关键词
regenerative medicine; tissue engineering; decellularized extracellular matrix; 3D bioprinting; bioink; scaffolds; biofabrication; transplantation; MESENCHYMAL STEM-CELLS; TISSUE ENGINEERING DECELLULARIZATION; DERMAL REGENERATION TEMPLATE; CARTILAGE TISSUE; GROWTH-FACTORS; CROSS-LINKING; BIODEGRADABLE SCAFFOLDS; MECHANICAL-PROPERTIES; CLINICAL TRANSLATION; SKELETAL-MUSCLE;
D O I
10.3390/ijms20184628
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix (ECM), cells, and inductive biomolecules. Regenerative medicine and tissue engineering can allow the improvement of patients' quality of life through availing novel treatment options. The coupling of regenerative medicine and tissue engineering with 3D printing, big data, and computational algorithms is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules, and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility, and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting.
引用
收藏
页数:29
相关论文
共 227 条
[1]   Extracellular matrix-based biomaterial scaffolds and the host response [J].
Aamodt, Joseph M. ;
Grainger, David W. .
BIOMATERIALS, 2016, 86 :68-82
[2]   Extracellular matrix mediators of metastatic cell colonization characterized using scaffold mimics of the pre-metastatic niche [J].
Aguado, Brian A. ;
Gaffe, Jordan R. ;
Nanavati, Dhaval ;
Rao, Shreyas S. ;
Bushnell, Grace G. ;
Azarin, Samira M. ;
Shea, Lonnie D. .
ACTA BIOMATERIALIA, 2016, 33 :13-24
[3]   Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules [J].
Ahn, Geunseon ;
Min, Kyung-Hyun ;
Kim, Changhwan ;
Lee, Jeong-Seok ;
Kang, Donggu ;
Won, Joo-Yun ;
Cho, Dong-Woo ;
Kim, Jun-Young ;
Jin, Songwan ;
Yun, Won-Soo ;
Shim, Jin-Hyung .
SCIENTIFIC REPORTS, 2017, 7
[4]   In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds [J].
Albanna, Mohammed ;
Binder, Kyle W. ;
Murphy, Sean V. ;
Kim, Jaehyun ;
Qasem, Shadi A. ;
Zhao, Weixin ;
Tan, Josh ;
El-Amin, Idris B. ;
Dice, Dennis D. ;
Marco, Julie ;
Green, Jason ;
Xu, Tao ;
Skardal, Aleksander ;
Holmes, James H. ;
Jackson, John D. ;
Atala, Anthony ;
Yoo, James J. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[5]   Three-dimensional bioprinting for organ bioengineering: promise and pitfalls [J].
Ali, Mohamed ;
Kumar, Anil P. R. ;
Lee, Sang Jin ;
Jackson, John D. .
CURRENT OPINION IN ORGAN TRANSPLANTATION, 2018, 23 (06) :649-656
[6]   Design and 3D Printing of Scaffolds and Tissues [J].
An, Jia ;
Teoh, Joanne Ee Mei ;
Suntornnond, Ratima ;
Chua, Chee Kai .
ENGINEERING, 2015, 1 (02) :261-268
[7]   Impact of bladder-derived acellular matrix, growth factors, and extracellular matrix constituents on the survival and multipotency of marrow-derived mesenchymal stem cells [J].
Antoon, Roula ;
Yeger, Herman ;
Loai, Yasir ;
Islam, Syed ;
Farhat, Walid A. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (01) :72-83
[8]   Decellularization for whole organ bioengineering [J].
Arenas-Herrera, J. E. ;
Ko, I. K. ;
Atala, A. ;
Yoo, J. J. .
BIOMEDICAL MATERIALS, 2013, 8 (01)
[9]   Trans-differentiation of human adipose-derived mesenchymal stem cells into cardiomyocyte-like cells on decellularized bovine myocardial extracellular matrix-based films [J].
Arslan, Yavuz Emre ;
Galata, Yusuf Furkan ;
Arslan, Tugba Sezgin ;
Derkus, Burak .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2018, 29 (08)
[10]   Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration [J].
Avila, Hector Martinez ;
Schwarz, Silke ;
Feldmann, Eva-Maria ;
Mantas, Athanasios ;
von Bomhard, Achim ;
Gatenholm, Paul ;
Rotter, Nicole .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (17) :7423-7435