Regularization Strategy for Multi-organ Nucleus Segmentation with Localizable Features

被引:0
作者
Traisuwan, Attasuntorn [1 ]
Limsiroratana, Somchai [1 ]
Phukpattaranont, Pornchai [2 ]
Tandayya, Pichaya [1 ]
机构
[1] Prince Songkla Univ, Fac Engn, Dept Comp Engn, Hat Yai, Songkhla, Thailand
[2] Prince Songkla Univ, Fac Engn, Dept Elect Engn, Hat Yai, Songkhla, Thailand
来源
2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022) | 2022年
关键词
Nucleus segmentation; Deep Learning; Regularization Strategy; CutMix; Color Normalization;
D O I
10.1109/JCSSE54890.2022.9836241
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Applying color normalization on H&E images is a famous protocol in digital pathology. Recently, the CutMix technique has a strong ability to generalize the classification models. In this paper, we propose the modified CutMix for segmentation tasks. We apply it to the MoNuSeg dataset. The U-Net with a MobileNet backbone is used for training and inferencing. Moreover, we compare it with the traditional color normalization. The results show that our modified CutMix outperformed color normalization with the +0.179 AJI score. It achieved the IoU score faster and got a higher AP for every IoU threshold.
引用
收藏
页数:6
相关论文
共 18 条
  • [1] DeVries T, 2017, Arxiv, DOI [arXiv:1708.04552, DOI 10.48550/ARXIV.1708.04552]
  • [2] Howard AG, 2017, Arxiv, DOI arXiv:1704.04861
  • [3] Deep Neural Networks for Acoustic Modeling in Speech Recognition
    Hinton, Geoffrey
    Deng, Li
    Yu, Dong
    Dahl, George E.
    Mohamed, Abdel-rahman
    Jaitly, Navdeep
    Senior, Andrew
    Vanhoucke, Vincent
    Patrick Nguyen
    Sainath, Tara N.
    Kingsbury, Brian
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) : 82 - 97
  • [4] Kukacka J., 2017, arXiv
  • [5] A Multi-Organ Nucleus Segmentation Challenge
    Kumar, Neeraj
    Verma, Ruchika
    Anand, Deepak
    Zhou, Yanning
    Onder, Omer Fahri
    Tsougenis, Efstratios
    Chen, Hao
    Heng, Pheng-Ann
    Li, Jiahui
    Hu, Zhiqiang
    Wang, Yunzhi
    Koohbanani, Navid Alemi
    Jahanifar, Mostafa
    Tajeddin, Neda Zamani
    Gooya, Ali
    Rajpoot, Nasir
    Ren, Xuhua
    Zhou, Sihang
    Wang, Qian
    Shen, Dinggang
    Yang, Cheng-Kun
    Weng, Chi-Hung
    Yu, Wei-Hsiang
    Yeh, Chao-Yuan
    Yang, Shuang
    Xu, Shuoyu
    Yeung, Pak Hei
    Sun, Peng
    Mahbod, Amirreza
    Schaefer, Gerald
    Ellinger, Isabella
    Ecker, Rupert
    Smedby, Orjan
    Wang, Chunliang
    Chidester, Benjamin
    That-Vinh Ton
    Minh-Triet Tran
    Ma, Jian
    Minh N Do
    Graham, Simon
    Quoc Dang Vu
    Kwak, Jin Tae
    Gunda, Akshaykumar
    Chunduri, Raviteja
    Hu, Corey
    Zhou, Xiaoyang
    Lotfi, Dariush
    Safdari, Reza
    Kascenas, Antanas
    O'Neil, Alison
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (05) : 1380 - 1391
  • [6] A Dataset and a Technique for Generalized Nuclear Segmentation for Computational Pathology
    Kumar, Neeraj
    Verma, Ruchika
    Sharma, Sanuj
    Bhargava, Surabhi
    Vahadane, Abhishek
    Sethi, Amit
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (07) : 1550 - 1560
  • [7] A review and comparison of breast tumor cell nuclei segmentation performances using deep convolutional neural networks
    Lagree, Andrew
    Mohebpour, Majidreza
    Meti, Nicholas
    Saednia, Khadijeh
    Lu, Fang-, I
    Slodkowska, Elzbieta
    Gandhi, Sonal
    Rakovitch, Eileen
    Shenfield, Alex
    Sadeghi-Naini, Ali
    Tran, William T.
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] Data Augmentation for Skin Lesion Analysis
    Perez, Fabio
    Vasconcelos, Cristina
    Avila, Sandra
    Valle, Eduardo
    [J]. OR 2.0 CONTEXT-AWARE OPERATING THEATERS, COMPUTER ASSISTED ROBOTIC ENDOSCOPY, CLINICAL IMAGE-BASED PROCEDURES, AND SKIN IMAGE ANALYSIS, OR 2.0 2018, 2018, 11041 : 303 - 311
  • [9] Rabinovich A., 2004, ADV NEUR IN
  • [10] Ronneberger O, 2015, Arxiv, DOI [arXiv:1505.04597, DOI 10.48550/ARXIV.1505.04597]