A note on the finite-time ruin probability of a renewal risk model with Brownian perturbation

被引:18
作者
Li, Jinzhu [1 ,2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotics; Brownian perturbation; Renewal risk model; Ruin probability; Subexponential class;
D O I
10.1016/j.spl.2017.03.028
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this note, we consider a renewal risk model with constant force of interest and Brownian perturbation. Assuming that the claim-size distribution function is from the subexponential class, we derive for the finite-time ruin probability a precise asymptotic expansion, which holds uniformly for any finite time horizon. Our result confirms the intuition that the asymptotic ruin probabilities of risk models with heavy-tailed claims are insensitive to the Brownian perturbation. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 13 条
[1]  
Athreya KB, 1972, BRANCHING PROCESSES
[2]   Uniform asymptotics for the finite-time ruin probabilities of two kinds of nonstandard bidimensional risk models [J].
Chen, Yang ;
Wang, Le ;
Wang, Yuebao .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) :114-129
[3]  
Cheng J., 2016, J INEQUAL APPL, V2016, P13, DOI DOI 10.1089/FPD.2015.1963
[4]   Ruin Probabilities for a Two-Dimensional Perturbed Risk Model with Stochastic Premiums [J].
Cheng, Jian-hua ;
Wang, De-hui .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (04) :1053-1066
[5]  
Embrechts P., 1997, Modelling Extremal Events for Insurance and Finance, DOI 10.1007/978-3-642-33483-2
[6]   Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest [J].
Gao, Qingwu ;
Yang, Xiuzhu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) :1193-1213
[7]   A uniform asymptotic estimate for discounted aggregate claims with subexponential tails [J].
Hao, Xuemiao ;
Tang, Qihe .
INSURANCE MATHEMATICS & ECONOMICS, 2008, 43 (01) :116-120
[8]   On the ruin probabilities of a bidimensional perturbed risk model [J].
Li, Junhai ;
Liu, Zaiming ;
Tang, Qihe .
INSURANCE MATHEMATICS & ECONOMICS, 2007, 41 (01) :185-195
[9]  
Piterbarg V. I., 1996, Asymptotic Methods in the Theory of Gaussian Processes and Fields
[10]   A NOTE ON CUMULATIVE SUMS [J].
STEIN, C .
ANNALS OF MATHEMATICAL STATISTICS, 1946, 17 (04) :498-499