Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators

被引:24
作者
Kulminskiy, D. D. [1 ,2 ,3 ]
Ponomarenko, V. I. [1 ,2 ,3 ]
Prokhorov, M. D. [1 ,2 ]
Hramov, A. E. [2 ,4 ]
机构
[1] Russian Acad Sci, Kotelnikov Inst Radio Engn & Elect, Saratov Branch, Zelyonaya St 38, Saratov 410019, Russia
[2] Innopolis Univ, Univ Skaya St 1, Innopolis 420500, Russia
[3] Saratov NG Chernyshevskii State Univ, Astrakhanskaya St 83, Saratov 410012, Russia
[4] Saratov State Med Univ, Bolshaya Kazachya St 112, Saratov 410012, Russia
基金
俄罗斯科学基金会;
关键词
Ensembles of neuronlike oscillators; Time-delayed coupling; Synchronization; Adaptive control; DYNAMICAL NETWORKS; CLUSTER SYNCHRONIZATION; STABILITY; CIRCUITS;
D O I
10.1007/s11071-019-05224-x
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We study both numerically and experimentally the synchronization in an ensemble of nonidentical neuronlike oscillators described by the FitzHugh-Nagumo equations. The cases of constant values of time-delayed couplings between the oscillators and adaptively controlled values of time-delayed couplings are considered. For the experimental study of the ensemble of neuronlike oscillators, we construct a radio engineering setup, in which the ability to specify both constant values and adaptively tuned values of couplings between the oscillators is implemented. Moreover, it is possible to specify an arbitrary architecture and type of dynamical couplings between oscillators in the setup. By the example of a system of two bidirectionally coupled nonidentical oscillators and a ring consisting of ten unidirectionally coupled nonidentical FitzHugh-Nagumo systems, it is shown that the using of an adaptively controlled time-delayed coupling allows one to achieve the in-phase synchronization of all oscillators in the ensemble even in the case of a large parameter mismatch. The results obtained in the physical experiment are in good agreement with the results of the numerical simulation.
引用
收藏
页码:735 / 748
页数:14
相关论文
共 71 条
[1]  
Abarbanel H. D. I., 1996, Physics-Uspekhi, V39, P337, DOI 10.1070/PU1996v039n04ABEH000141
[2]   Experimental study of bifurcations in modified FitzHugh-Nagumo cell [J].
Binczak, S ;
Kazantsev, V ;
Nekorkin, VI ;
Bilbault, JM .
ELECTRONICS LETTERS, 2003, 39 (13) :961-962
[3]   ELECTROGRAPHIC AND CLINICAL CORRELATES OF SECONDARY BILATERAL SYNCHRONY [J].
BLUME, WT ;
PILLAY, N .
EPILEPSIA, 1985, 26 (06) :636-641
[4]   Cluster synchronization for directed heterogeneous dynamical networks via decentralized adaptive intermittent pinning control [J].
Cai, Shuiming ;
Jia, Qiang ;
Liu, Zengrong .
NONLINEAR DYNAMICS, 2015, 82 (1-2) :689-702
[5]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[6]   DYNAMICS OF DELAY-COUPLED EXCITABLE NEURAL SYSTEMS [J].
Dahlem, M. A. ;
Hiller, G. ;
Panchuk, A. ;
Schoell, E. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (02) :745-753
[7]   Convergence and synchronization in heterogeneous networks of smooth and piecewise smooth systems [J].
DeLellis, Pietro ;
di Bernardo, Mario ;
Liuzza, Davide .
AUTOMATICA, 2015, 56 :1-11
[8]  
Ditto W, 2002, NATURE, V415, P736, DOI 10.1038/415736b
[9]   Transition dynamics and adaptive synchronization of time-delay interconnected corticothalamic systems via nonlinear control [J].
Fan, Denggui ;
Zhang, Liyuan ;
Wang, Qingyun .
NONLINEAR DYNAMICS, 2018, 94 (04) :2807-2825
[10]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&