Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz-Sobolev spaces

被引:23
作者
Afrouzi, Ghasem A. [1 ]
Heidarkhani, Shapour [2 ]
Shokooh, Saeid [1 ,3 ]
机构
[1] Univ Mazandaran, Dept Math, Fac Math Sci, Babol Sar, Iran
[2] Razi Univ, Dept Math, Fac Sci, Kermanshah 67149, Iran
[3] Univ Gonbad Kavous, Dept Math, Fac Sci, Gonbad Kavous, Iran
关键词
Steklov problem; non-homogeneous differential operator; Orlicz-Sobolev space; multiple solutions; variational methods; VARIABLE EXPONENT;
D O I
10.1080/17476933.2015.1031122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Employing variational methods and critical point theory, in an appropriate Orlicz-Sobolev setting, we establish the existence of infinitely many solutions for Steklov problems associated to non-homogeneous differential operators. We also provide some particular cases and a concrete example in order to illustrate the main results.
引用
收藏
页码:1505 / 1521
页数:17
相关论文
共 36 条
[1]  
Adams R., 1975, SOBOLEV SPACES
[2]  
Afrouzi G. A., 2014, ELECT J DIFFER EQ, V134, P1
[3]  
Afrouzi G. A., EXISTENCE R IN PRESS
[4]  
Allaoui M, 2012, ELECTRON J DIFFER EQ, V132, P1
[5]   Solutions for Steklov boundary value problems involving p(x)-Laplace operators [J].
Allaoui, Mostafa ;
El Amrouss, Abdel Rachid .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01) :163-173
[6]   Existence of solutions for a Steklov problem involving the p(x)-Laplacian [J].
Anane, Aomar ;
Chakrone, Omar ;
Zerouali, Abdellah ;
Karim, Belhadj .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01) :205-213
[7]  
[Anonymous], 1987, Math. USSR, DOI DOI 10.1070/IM1987V029N01ABEH000958
[8]  
[Anonymous], 200401 DUQ U DEP MAT
[9]  
Bonanno G., 2012, NONLIN ANAL TMA, V1, P2992
[10]   Existence results of infinitely many solutions for p(x)-Laplacian elliptic Dirichlet problems [J].
Bonanno, Gabriele ;
Chinni, Antonia .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (11) :1233-1246