Development of valuable predictive read-across models based on "real-life" (sparse) nanotoxicity data

被引:18
作者
Gajewicz, A. [1 ]
机构
[1] Univ Gdansk, Lab Environm Chemometr, Fac Chem, Wita Stwosza 63, PL-80308 Gdansk, Poland
关键词
METAL-OXIDE NANOPARTICLES; ESCHERICHIA-COLI; NANO-QSAR; IN-VITRO; APPLICABILITY DOMAIN; RISK-ASSESSMENT; ECLECTIC DATA; TOXICITY; CYTOTOXICITY; VALIDATION;
D O I
10.1039/c7en00102a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In view of the rapidly growing number of synthesized nanoparticles as well as public concerns about their potential negative impacts on human health and the environment, there is an urgent need to address current risk assessment data gaps. Thus, the development of comprehensive computational methods (e.g., read-across methods) for filling data gaps that meet realistic data needs is crucial. The present study proposes a new quantitative read-across approach based on linear algebra (i.e., one/two-point-slope formula) and one of the most widely used unsupervised pattern recognition methods (i.e., principal component analysis). The applicability and usefulness of the newly developed read-across algorithm for pre-screening hazard assessment of nanomaterials are confirmed by using three literature nanotoxicity datasets. The findings from this study clearly indicate that the proposed read-across approach provides reasonably accurate and statistically significant results of estimations of nanotoxicity data. Therefore, the method can be used for prioritizing current and future nanoparticles for the purpose of further testing and risk assessment.
引用
收藏
页码:1389 / 1403
页数:15
相关论文
共 70 条
  • [1] Development and evaluation of a QSPR model for the prediction of diamagnetic susceptibility
    Afantitis, Antreas
    Melagraki, Georgia
    Sarimveis, Haralambos
    Koutentis, Panayiotis A.
    Markopoulos, John
    Igglessi-Markopoulou, Olga
    [J]. QSAR & COMBINATORIAL SCIENCE, 2008, 27 (04): : 432 - 436
  • [2] Toward Good Read-Across Practice (GRAP) Guidance
    Ball, Nicholas
    Cronin, Mark T. D.
    Shen, Jie
    Blackburn, Karen
    Booth, Ewan D.
    Bouhifd, Mounir
    Donley, Elizabeth
    Egnash, Laura
    Hastings, Charles
    Juberg, Daland R.
    Kleensang, Andre
    Kleinstreuer, Nicole
    Kroese, E. Dinant
    Lee, Adam C.
    Luechtefeld, Thomas
    Maertens, Alexandra
    Marty, Sue
    Naciff, Jorge M.
    Palmer, Jessica
    Pamies, David
    Penman, Mike
    Richarz, Andrea-Nicole
    Russo, Daniel P.
    Stuard, Sharon B.
    Patlewicz, Grace
    van Ravenzwaay, Bennard
    Wu, Shengde
    Zhu, Hao
    Hartung, Thomas
    [J]. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION, 2016, 33 (02) : 149 - 166
  • [3] Results of a round-robin exercise on read-across
    Benfenati, E.
    Belli, M.
    Borges, T.
    Casimiro, E.
    Cester, J.
    Fernandez, A.
    Gini, G.
    Honma, M.
    Kinzl, M.
    Knauf, R.
    Manganaro, A.
    Mombelli, E.
    Petoumenou, M. I.
    Paparella, M.
    Paris, P.
    Raitano, G.
    [J]. SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2016, 27 (05) : 371 - 384
  • [4] A framework to facilitate consistent characterization of read across uncertainty
    Blackburn, Karen
    Stuard, Sharon B.
    [J]. REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2014, 68 (03) : 353 - 362
  • [5] Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review
    Bondarenko, Olesja
    Juganson, Katre
    Ivask, Angela
    Kasemets, Kaja
    Mortimer, Monika
    Kahru, Anne
    [J]. ARCHIVES OF TOXICOLOGY, 2013, 87 (07) : 1181 - 1200
  • [6] Principal component analysis
    Bro, Rasmus
    Smilde, Age K.
    [J]. ANALYTICAL METHODS, 2014, 6 (09) : 2812 - 2831
  • [7] Nanotechnology and human health: risks and benefits
    Cattaneo, Anna Giulia
    Gornati, Rosalba
    Sabbioni, Enrico
    Chiriva-Internati, Maurizio
    Cobos, Everardo
    Jenkins, Marjorie R.
    Bernardini, Giovanni
    [J]. JOURNAL OF APPLIED TOXICOLOGY, 2010, 30 (08) : 730 - 744
  • [8] Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study
    Chattopadhyay, Sourav
    Dash, Sandeep Kumar
    Tripathy, Satyajit
    Das, Balaram
    Mandal, Debasis
    Pramanik, Panchanan
    Roy, Somenath
    [J]. CHEMICO-BIOLOGICAL INTERACTIONS, 2015, 226 : 58 - 71
  • [9] Real External Predictivity of QSAR Models: How To Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient
    Chirico, Nicola
    Gramatica, Paola
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2011, 51 (09) : 2320 - 2335
  • [10] Optimally splitting cases for training and testing high dimensional classifiers
    Dobbin, Kevin K.
    Simon, Richard M.
    [J]. BMC MEDICAL GENOMICS, 2011, 4