Regularity and radial symmetry of positive solutions for a higher order elliptic system

被引:1
作者
Zhou, Huai-yu [1 ]
Tang, Su-fang [1 ]
机构
[1] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Peoples R China
基金
中国国家自然科学基金;
关键词
higher order elliptic system; radial symmetry; regularity; the method of moving plane; classification of solution; INTEGRAL-EQUATIONS; CRITICAL EXPONENTS; CLASSIFICATION;
D O I
10.1007/s10255-017-0662-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the properties of solutions for the following elliptic partial differential equations system in R-n , {(-Delta)(alpha/2) u = u(p1) v(p2), (-Delta)(alpha/2) v = u(q1) v(q2), where 0 < alpha < n, p (i) and q (i) (i = 1, 2) satisfy some suitable assumptions. Due to equivalence between the PDEs system and a given integral system, we prove the radial symmetry and regularity of positive solutions to the PDEs system via the method of moving plane in integral forms and Regularity Lifting Lemma. For the special case, when p (1) + p (2) = q (1) + q (2) = n+alpha/n-alpha, we classify the solutions of the PDEs system.
引用
收藏
页码:551 / 560
页数:10
相关论文
共 15 条
[1]  
Chen W., 2011, COMMUN PUR APPL ANAL, V12, P2497
[2]  
Chen W., 2010, AIMS BOOK SERIES, V4, P95
[3]   CLASSIFICATION OF POSITIVE SOLUTIONS FOR NONLINEAR DIFFERENTIAL AND INTEGRAL SYSTEMS WITH CRITICAL EXPONENTS [J].
Chen, Wenxiong ;
Li, Congming .
ACTA MATHEMATICA SCIENTIA, 2009, 29 (04) :949-960
[4]   AN INTEGRAL SYSTEM AND THE LANE-EMDEN CONJECTURE [J].
Chen, Wenxiong ;
Li, Congming .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) :1167-1184
[5]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[6]  
Chen WX, 2005, COMMUN PUR APPL ANAL, V4, P1
[7]   Liouville type theorems for the system of integral equations [J].
Dou, Jingbo .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (06) :2586-2594
[8]   Hartree-Fock theory for double condensates [J].
Esry, BD ;
Greene, CH ;
Burke, JP ;
Bohn, JL .
PHYSICAL REVIEW LETTERS, 1997, 78 (19) :3594-3597
[9]   UNIQUENESS OF POSITIVE BOUND STATES TO SCHRODINGER SYSTEMS WITH CRITICAL EXPONENTS [J].
Li, Congming ;
Ma, Li .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (03) :1049-1057
[10]  
Li YY, 2004, J EUR MATH SOC, V6, P153