Quantum detector tomography of a superconducting nanostrip photon-number-resolving detector

被引:29
作者
Endo, Mamoru [1 ]
Sonoyama, Tatsuki [1 ]
Matsuyama, Mikihisa [1 ]
Okamoto, Fumiya [1 ]
Miki, Shigehito [2 ,3 ]
Yabuno, Masahiro [2 ]
China, Fumihiro [2 ]
Terai, Hirotaka [2 ]
Furusawa, Akira [1 ]
机构
[1] Univ Tokyo, Sch Engn, Dept Appl Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
[2] Natl Inst Informat & Commun Technol, Adv ICT Res Inst, Nishi Ku, 588-2 Iwaoka, Kobe, Hyogo 6512492, Japan
[3] Kobe Univ, Grad Sch Engn, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6570013, Japan
基金
日本科学技术振兴机构; 日本学术振兴会;
关键词
DETECTION EFFICIENCY; SYSTEM; STATES;
D O I
10.1364/OE.423142
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Superconducting nanostrip photon detectors have been used as single-photon detectors, which can discriminate only photons' presence or absence. It has recently been found that they can discriminate the number of photons by analyzing the output signal waveform, and they are expected to be used in various fields, especially in optical-quantum-information processing. Here, we improve the photon-number-resolving performance for light with a high-average photon number by pattern matching of the output signal waveform. Furthermore, we estimate the positive-operator-valued measure of the detector by a quantum detector tomography. The result shows that the device has photon-number-resolving performance up to five photons without any multiplexing or arraying, indicating that it is useful as a photon-number-resolving detector. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:11728 / 11738
页数:11
相关论文
共 56 条
[1]  
Achilles D, 2004, J MOD OPTIC, V51, P1499, DOI 10.1080/09500340410001670875
[2]   Universal quantum computation with temporal-mode bilayer square lattices [J].
Alexander, Rafael N. ;
Yokoyama, Shota ;
Furusawa, Akira ;
Menicucci, Nicolas C. .
PHYSICAL REVIEW A, 2018, 97 (03)
[3]  
Andersen UL, 2015, NAT PHYS, V11, P713, DOI [10.1038/nphys3410, 10.1038/NPHYS3410]
[4]   Generation of highly pure Schrodinger's cat states and real-time quadrature measurements via optical filtering [J].
Asavanant, Warit ;
Nakashima, Kota ;
Shiozawa, Yu ;
Yoshikawa, Jun-Ichi ;
Furusawa, Akira .
OPTICS EXPRESS, 2017, 25 (26) :32227-32242
[5]   Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting [J].
Bartlett, SD ;
Sanders, BC .
PHYSICAL REVIEW A, 2002, 65 (04) :5
[6]   Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors [J].
Bulaevskii, L. N. ;
Graf, Matthias J. ;
Kogan, V. G. .
PHYSICAL REVIEW B, 2012, 85 (01)
[7]   Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors [J].
Cabrera, B ;
Clarke, RM ;
Colling, P ;
Miller, AJ ;
Nam, S ;
Romani, RW .
APPLIED PHYSICS LETTERS, 1998, 73 (06) :735-737
[8]   Scalable cryogenic readout circuit for a superconducting nanowire single-photon detector system [J].
Cahall, Clinton ;
Gauthier, Daniel J. ;
Kim, Jungsang .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (06)
[9]   Multi-photon detection using a conventional superconducting nanowire single-photon detector [J].
Cahall, Clinton ;
Nicolich, Kathryn L. ;
Islam, Nurul T. ;
Lafyatis, Gregory P. ;
Miller, Aaron J. ;
Gauthier, Daniel J. ;
Kim, Jungsang .
OPTICA, 2017, 4 (12) :1534-1535
[10]   TOWARDS PICOSECOND RESOLUTION WITH SINGLE-PHOTON AVALANCHE-DIODES [J].
COVA, S ;
LONGONI, A ;
ANDREONI, A .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1981, 52 (03) :408-412