The (2+1)-dimensional nonlinear evolution equation in dusty plasma and its analytical solutions

被引:1
作者
Xu, Liyang [1 ]
Yin, Xiaojun [1 ]
Sa, Rula [1 ]
机构
[1] Inner Mongolia Agr Univ, Coll Sci, Hohhot 010018, Peoples R China
来源
MODERN PHYSICS LETTERS B | 2022年 / 36卷 / 11期
基金
中国国家自然科学基金;
关键词
The generalized exponential rational function method; KP equation; the analytical solutions; dusty plasmas; ROGUE WAVE SOLUTIONS; LUMP; SOLITONS; BOUSSINESQ; SYSTEM; PAIR;
D O I
10.1142/S0217984922500403
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, a (2+1)-dimensional Kadomtsev-Petviashvili (KP) equation is studied from the governing equations of dusty plasma by means of multiscale analysis and reduced perturbation method. We utilize the generalized exponential rational function method to give various forms of analytical solutions with free parameters of the corresponding equation by using Mathematica software calculation. Then, appropriate parameter values are selected to draw the three-dimensional (3D) diagram and contour diagram of the analytic solutions. We also give the influence of these physical parameters on wave amplitude, waves profile, and stability of waves. The results show the generalized method is a reliable mathematical method to solve similar nonlinear equations in mathematical physics and these solutions can enrich the physical behavior of the equation in dusty plasma.
引用
收藏
页数:13
相关论文
共 50 条
[31]   Diversity of interaction solutions to the (2+1)-dimensional Ito equation [J].
Ma, Wen-Xiu ;
Yong, Xuelin ;
Zhang, Hai-Qiang .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) :289-295
[32]   THE DYNAMICS OF THE EXACT SOLUTIONS OF THE (2+1)-DIMENSIONAL HIROTA EQUATION [J].
Chen, Caifeng ;
Li, Maohua ;
Zheng, Mengqi ;
Dong, Xiaona .
ROMANIAN JOURNAL OF PHYSICS, 2022, 67 (3-4)
[33]   Localized interaction solutions of the (2+1)-dimensional Ito Equation [J].
Ma, Hong-Cai ;
Wu, Han-Fang ;
Ma, Wen-Xiu ;
Deng, Ai-Ping .
OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (06)
[34]   Integrability and Solutions of the (2+1)-dimensional Hunter Saxton Equation [J].
Cai, Hong-Liu ;
Qu, Chang-Zheng .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2016, 65 (04) :397-404
[35]   Novel solitary and shock wave solutions for the generalized variable-coefficients (2+1)-dimensional KP-Burger equation arising in dusty plasma [J].
El-Shiekh, Rehab M. .
CHINESE JOURNAL OF PHYSICS, 2021, 71 :341-350
[36]   Variable separation solutions for the (2+1)-dimensional Burgers equation [J].
Tang, XY ;
Lou, SY .
CHINESE PHYSICS LETTERS, 2003, 20 (03) :335-337
[37]   Analytical optical soliton solutions of (2+1)-dimensional Schrodinger equation with PT-like potentials [J].
Wang, Gangwei ;
Su, Xing ;
Wang, Yue ;
Wang, Qi ;
Dong, Xiaofang .
OPTIK, 2018, 160 :396-401
[38]   A new(2+1) dimensional integrable evolution equation for an ion acoustic wave in a magnetized plasma [J].
Mukherjee, Abhik ;
Janaki, M. S. ;
Kundu, Anjan .
PHYSICS OF PLASMAS, 2015, 22 (07)
[39]   Rational solutions and interaction solutions for (2+1)-dimensional nonlocal Schrodinger equation* [J].
Chen, Mi ;
Wang, Zhen .
CHINESE PHYSICS B, 2020, 29 (12)
[40]   Solitons, rogue waves and breather solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients [J].
Hamed, A. A. ;
Kader, A. H. Abdel ;
Latif, M. S. Abdel .
OPTIK, 2020, 216