PERFECT STATE TRANSFER IS POLY-TIME

被引:0
作者
Coutinho, Gabriel [1 ]
Godsil, Chris [2 ]
机构
[1] ICEx UFMG, Dept Ciencia Comp, Belo Horizonte, MG, Brazil
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON, Canada
基金
巴西圣保罗研究基金会; 加拿大自然科学与工程研究理事会;
关键词
Perfect state transfer; quantum walks; spectral graph theory; GRAPHS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that deciding whether a graph admits perfect state transfer can be done in polynomial time on a classical computer with respect to the size of the graph.
引用
收藏
页码:495 / 502
页数:8
相关论文
共 24 条
[1]  
Ackelsberg Ethan, 2015, ARXIV150805458, p[12, 495]
[2]  
Banchi Leonardo, 2016, ARXIV160804722, p[13, 500]
[3]   Characterization of quantum circulant networks having perfect state transfer [J].
Basic, Milan .
QUANTUM INFORMATION PROCESSING, 2013, 12 (01) :345-364
[4]   Quantum communication through an unmodulated spin chain [J].
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[5]  
Cai Jin-Yi, 1994, INT J FDN COMPUT DEC, P293
[6]  
Chan A., 2020, Algebraic Combinatorics, V3, P757
[7]   Continuous-time orbit problems are decidable in polynomial-time [J].
Chen, Taolue ;
Yu, Nengkun ;
Han, Tingting .
INFORMATION PROCESSING LETTERS, 2015, 115 (01) :11-14
[8]   Perfect state transfer in cubelike graphs [J].
Cheung, Wang-Chi ;
Godsil, Chris .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) :2468-2474
[9]   Perfect state transfer in quantum spin networks [J].
Christandl, M ;
Datta, N ;
Ekert, A ;
Landahl, AJ .
PHYSICAL REVIEW LETTERS, 2004, 92 (18) :187902-1
[10]   NO LAPLACIAN PERFECT STATE TRANSFER IN TREES [J].
Coutinho, Gabriel ;
Liu, Henry .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (04) :2179-2188