A Microscale Modeling Tool for the Design and Optimization of Solid Oxide Fuel Cells

被引:23
作者
Liu, Shixue [1 ,2 ,3 ,4 ]
Kong, Wei [2 ]
Lin, Zijing [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[4] Chinese Acad Sci, Key Lab Biofuels, Qingdao 266101, Peoples R China
来源
ENERGIES | 2009年 / 2卷 / 02期
基金
美国国家科学基金会;
关键词
solid oxide fuel cell; functional layer; modeling tool; optimization; finite element method; PLANAR SOFCS; DUSTY-GAS; ANODE; POLARIZATION; ELECTROCHEMISTRY; PERFORMANCE; PARAMETERS; TRANSPORT; CATHODES; LSM;
D O I
10.3390/en20200427
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A two dimensional numerical model of a solid oxide fuel cell (SOFC) with electrode functional layers is presented. The model incorporates the partial differential equations for mass transport, electric conduction and electrochemical reactions in the electrode functional layers, the anode support layer, the cathode current collection layer and at the electrode/electrolyte interfaces. A dusty gas model is used in modeling the gas transport in porous electrodes. The model is capable of providing results in good agreement with the experimental I-V relationship. Numerical examples are presented to illustrate the applications of this numerical model as a tool for the design and optimization of SOFCs. For a stack assembly of a pitch width of 2 mm and an interconnect-electrode contact resistance of 0.025 Omega cm(2), a typical SOFC stack cell should consist of a rib width of 0.9 mm, a cathode current collection layer thickness of 200-300 mu m, a cathode functional layer thickness of 20-40 mu m, and an anode functional layer thickness of 10-20 mu m in order to achieve optimal performance.
引用
收藏
页码:427 / 444
页数:18
相关论文
共 26 条
[1]  
[Anonymous], [No title captured], DOI DOI 10.1021/IE50677A007
[2]  
[Anonymous], 2004, Fuel Cell Handbook, V7
[3]   Simplified processing of anode-supported thin film planar solid oxide fuel cells [J].
Basu, RN ;
Blass, G ;
Buchkremer, HP ;
Stöver, D ;
Tietz, F ;
Wessel, E ;
Vinke, IC .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2005, 25 (04) :463-471
[4]   A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks [J].
Bi, Wuxi ;
Chen, Daifen ;
Lin, Zijing .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (09) :3873-3884
[5]   Modeling solid oxide fuel cell operation: Approaches, techniques and results [J].
Bove, Roberto ;
Ubertini, Stefano .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :543-559
[6]   Percolation theory to predict effective properties of solid oxide fuel-cell composite electrodes [J].
Chen, Daifen ;
Lin, Zijing ;
Zhu, Huayang ;
Kee, Robert J. .
JOURNAL OF POWER SOURCES, 2009, 191 (02) :240-252
[7]   Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs [J].
Haanappel, VAC ;
Mertens, J ;
Rutenbeck, D ;
Tropartz, C ;
Herzhof, W ;
Sebold, D ;
Tietz, F .
JOURNAL OF POWER SOURCES, 2005, 141 (02) :216-226
[8]   Numerical modeling of solid oxide fuel cells [J].
Ho, Thinh X. ;
Kosinski, Pawel ;
Hoffmann, Alex C. ;
Vik, Arild .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (21) :5356-5365
[9]   Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model [J].
Jeon, DH ;
Nam, JH ;
Kim, CJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (02) :A406-A417
[10]   Engineering of microstructure and design of a planar porous composite SOFC cathode: A numerical analysis [J].
Kenney, Ben ;
Karan, Kunal .
SOLID STATE IONICS, 2007, 178 (3-4) :297-306