On a system of partial differential equations and the bivariate Hermite polynomials

被引:8
作者
Liu, Zhi-Guo [1 ]
机构
[1] East China Normal Univ, Dept Math, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Bivariate Hermite polynomials; Mehler formula; Partial differential equations; Analytic functions;
D O I
10.1016/j.jmaa.2017.04.066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the theory of analytic functions of several complex variables, we prove that if an analytic function in several variables satisfies a system of partial differential equations, then, it can be expanded in terms of the product of the bivariate Hermite polynomials. This expansion theorem allows us to develop a systematic method to prove the identities involving the bivariate Hermite polynomials. With this expansion theorem, we can easily derive, among others, the Mehler formula, Nielsen's formulas, Doetsch's formula, the addition formula, Weisner's formulas, Carlitz's formulas for the bivariate Hermite polynomials. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 26 条
[1]  
Abiodun R.F.A., 1977, RIV MAT U PARMA, V3, P17
[2]  
Andrews GE., 1999, SPECIAL FUNCTIONS EN
[3]  
[Anonymous], 1953, Higher transcendental functions
[4]  
Appell P., 1926, Fonctions hypergeometriques et hyperspheriques
[5]  
Askey R., 1975, Orthogonal polynomials and special functions
[6]  
Beals R., 2010, Special Functions
[7]  
Carlitz L., 1970, COLLECT MATH, V21, P117
[8]  
Dhar S.C., 1934, B CALCUTTA MATH SOC, V26, P57
[9]   Integral characteristics of Hermite polynomials. [J].
Doetsch, G .
MATHEMATISCHE ZEITSCHRIFT, 1930, 32 :587-599
[10]   New generating function formulae of even- and odd-Hermite polynomials obtained and applied in the context of quantum optics [J].
Fan Hong-Yi ;
Zhan De-Hui .
CHINESE PHYSICS B, 2014, 23 (06)