Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer-Sobolev inner product

被引:8
作者
Fejzullahu, Bujar Xh [1 ]
机构
[1] Univ Prishtina, Fac Math & Sci, Prishtine 10000, Kosovo, Serbia
关键词
Gegenbauer orthogonal polynomials; Gegenbauer-Sobolev type orthogonal polynomials; Fourier expansions; COHERENT PAIRS; SERIES; CONVERGENCE; JACOBI; DIVERGENCE; RESPECT;
D O I
10.1016/j.jat.2009.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {Q(n)((alpha)) (x)}(n >= 0) denote the sequence of monic polynomials orthogonal with respect to the non-discrete Sobolev inner product < f, g > = integral(1)(-1) f(x)g(x)d mu(x) + lambda integral(1)(-1) f'(x)g'(x)d mu(x) where d mu(x) = (1 - x(2))(alpha-1/2)dx with alpha > -1/2, and lambda > 0. A strong asymptotic on (-1, 1), a Mehler-Heine type formula as well as Sobolev norms of Q(n)((alpha)) are obtained. We also study the necessary conditions for norm convergence and the failure of a.e. convergence of a Fourier expansion in terms of the Sobolev orthogonal polynomials. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:397 / 406
页数:10
相关论文
共 23 条
[1]  
Adams A., 2003, Sobolev Spaces, V140
[2]   Laguerre-Sobolev orthogonal polynomials:: asymptotics for coherent pairs of type II [J].
Alfaro, M ;
Moreno-Balcázar, JJ ;
Rezola, ML .
JOURNAL OF APPROXIMATION THEORY, 2003, 122 (01) :79-96
[3]  
[Anonymous], Higher transcendental functions
[4]   ASYMPTOTIC-BEHAVIOR OF THE L(P)-NORMS AND THE ENTROPY FOR GENERAL ORTHOGONAL POLYNOMIALS [J].
APTEKAREV, AI ;
BUYAROV, VS ;
DEGEZA, IS ;
DEHESA, JS .
RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 82 (02) :373-395
[5]   2 NOTES ON CONVERGENCE AND DIVERGENCE AE OF FOURIER-SERIES WITH RESPECT TO SOME ORTHOGONAL SYSTEMS [J].
GUADALUPE, JJ ;
PEREZ, M ;
RUIZ, FJ ;
VARONA, JL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (02) :457-464
[6]   ON POLYNOMIALS ORTHOGONAL WITH RESPECT TO CERTAIN SOBOLEV INNER PRODUCTS [J].
ISERLES, A ;
KOCH, PE ;
NORSETT, SP ;
SANZSERNA, JM .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (02) :151-175
[7]  
Kufner A., 1985, A Wiley-Interscience Publication
[8]   Asymptotics of Sobolev orthogonal polynomials for symmetrically coherent pairs of measures with compact support [J].
Marcellan, F ;
MartinezFinkelshtein, A ;
MorenoBalcazar, JJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 81 (02) :217-227
[9]   Strong asymptotics for Gegenbauer-Sobolev orthogonal polynomials [J].
MartinezFinkelshtein, A ;
MorenoBalcazar, JJ ;
PijeiraCabrera, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 81 (02) :211-216
[10]   Divergent Cesaro and Riesz means of Jacobi and Laguerre expansions [J].
Meaney, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (10) :3123-3128