A Fragment-Based Approach to Probing Adenosine Recognition Sites by Using Dynamic Combinatorial Chemistry

被引:42
作者
Scott, Duncan E. [1 ]
Dawes, Gwen J. [1 ]
Ando, Michiyo [1 ]
Abell, Chris [1 ]
Ciulli, Alessio [1 ]
机构
[1] Univ Cambridge, Univ Chem Lab, Cambridge CB2 1EW, England
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
drug design; dynamic chemistry; enzymes; inhibitors; protein X-ray crystallography; MYCOBACTERIUM-TUBERCULOSIS; PANTOTHENATE SYNTHETASE; INHIBITORS; DISCOVERY;
D O I
10.1002/cbic.200900537
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A new strategy that combines the concepts of fragment-based drug design and dynamic combinatorial chemistry (DCC) for targeting adenosine recognition sites on enzymes is reported. We demonstrate the use of 5'-deoxy-5'-thioadenosine as a noncovalent anchor fragment in dynamic combinatorial libraries templated by Mycobacterium tuberculosis pantothenate synthetase. A benzyl disulfide derivative was identified upon library analysis by HPLC. Structural and binding studies of protein-ligand complexes by X-ray crystallography and isothermaltitration calorimetry informed the subsequent optimisation of the DCC hit into a disulfide containing the novel meta-nitrobenzyl fragment that targets the pantoate binding site of pantothenate synthetase. Given the prevalence of adenosine-recognition motifs in enzymes, our results provide a proof-of-concept for using this strategy to probe adjacent pockets for a range of adenosine binding enzymes, including other related adenylate-forming ligases, kinases, and ATPases, as well as NAD(P)(H), CoA and FAD(H-2) binding proteins.
引用
收藏
页码:2772 / 2779
页数:8
相关论文
共 38 条
[21]  
ISHIZUKA N, 1990, J CHEM SOC P1, V4, P827
[22]   Targeting nucleic acid secondary structures with polyamides using an optimized dynamic combinatorial approach [J].
Ladame, S ;
Whitney, AM ;
Balasubramanian, S .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (35) :5736-5739
[23]  
LADAME S, 2005, ANGEW CHEM, V117, P5882
[24]   Dynamic combinatorial mass spectrometry leads to metallo-β-lactamase inhibitors [J].
Lienard, Benoit M. R. ;
Hueting, Rebekka ;
Lassaux, Patricia ;
Galleni, Moreno ;
Frere, Jean-Marie ;
Schofield, Christopher J. .
JOURNAL OF MEDICINAL CHEMISTRY, 2008, 51 (03) :684-688
[25]   A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening [J].
McGovern, SL ;
Caselli, E ;
Grigorieff, N ;
Shoichet, BK .
JOURNAL OF MEDICINAL CHEMISTRY, 2002, 45 (08) :1712-1722
[26]  
Murray CW, 2009, NAT CHEM, V1, P187, DOI [10.1038/nchem.217, 10.1038/NCHEM.217]
[27]   Refinement of macromolecular structures by the maximum-likelihood method [J].
Murshudov, GN ;
Vagin, AA ;
Dodson, EJ .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1997, 53 :240-255
[28]   Implementation of molecular replacement in AMoRe [J].
Navaza, J .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2001, 57 :1367-1372
[29]   Dynamic combinatorial chemistry [J].
Otto, S ;
Furlan, RLE ;
Sanders, JKM .
DRUG DISCOVERY TODAY, 2002, 7 (02) :117-125
[30]  
Pignot M, 2000, EUR J ORG CHEM, V2000, P549