Data Mining in Cancer Research

被引:23
作者
Lisboa, Paulo J. G. [1 ]
Vellido, Alfredo [2 ]
Tagliaferri, Roberto [3 ]
Napolitano, Francesco [3 ]
Ceccarelli, Michele [4 ]
Martin-Guerrero, Jose D. [5 ]
Biganzoli, Elia [6 ]
机构
[1] Liverpool John Moores Univ, Liverpool L3 5UX, Merseyside, England
[2] Tech Univ Catalonia, Girona, Spain
[3] Univ Salerno, Salerno, Italy
[4] Univ Sannio, Benevento, Italy
[5] Univ Valencia, E-46003 Valencia, Spain
[6] Univ Milan, I-20122 Milan, Italy
关键词
GENE-EXPRESSION DATA; REGULATORY NETWORKS; CLUSTER-ANALYSIS; IDENTIFICATION; BIOLOGY; MODELS; BRAIN;
D O I
10.1109/MCI.2009.935311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Advances in cancer medicine have traditionally come from detailed understanding of biological processes, later translated into therapeutic interventions, whose effectiveness is established by rigorous analysis of clinical trials. Over the last two decades the increasing throughput of data from microarray screening, spectral imaging and longitudinal studies are turning the understanding of cancer pathology into as much a data-based as a biologically and clinically driven science, with potential to impact more strongly on evidence-based decision support moving towards personalized medicine [1]. © 2006 IEEE.
引用
收藏
页码:14 / 18
页数:5
相关论文
共 40 条
[1]  
[Anonymous], 2007, ACM Transactions on Knowledge Discovery from Data, DOI [DOI 10.1145/1217299.1217303, 10.1145/1217299.1217303]
[2]   Reverse engineering of regulatory networks in human B cells [J].
Basso, K ;
Margolin, AA ;
Stolovitzky, G ;
Klein, U ;
Dalla-Favera, R ;
Califano, A .
NATURE GENETICS, 2005, 37 (04) :382-390
[3]   Clustering methods for microarray gene expression data [J].
Belacel, Nabil ;
Wang, Qian ;
Cuperlovic-Culf, Miroslava .
OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2006, 10 (04) :507-531
[4]  
Ben-Hur A., 2002, BIOCOMPUTING 2002, V7, P6
[5]  
Biganzoli E, 1998, STAT MED, V17, P1169, DOI 10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.3.CO
[6]  
2-4
[7]  
BOROWSKI EJ, 2001, COMPUTATIONAL MODELI
[8]   Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing [J].
Campbell, Peter J. ;
Stephens, Philip J. ;
Pleasance, Erin D. ;
O'Meara, Sarah ;
Li, Heng ;
Santarius, Thomas ;
Stebbings, Lucy A. ;
Leroy, Catherine ;
Edkins, Sarah ;
Hardy, Claire ;
Teague, Jon W. ;
Menzies, Andrew ;
Goodhead, Ian ;
Turner, Daniel J. ;
Clee, Christopher M. ;
Quail, Michael A. ;
Cox, Antony ;
Brown, Clive ;
Durbin, Richard ;
Hurles, Matthew E. ;
Edwards, Paul A. W. ;
Bignell, Graham R. ;
Stratton, Michael R. ;
Futreal, P. Andrew .
NATURE GENETICS, 2008, 40 (06) :722-729
[9]   Identification of prognostic signatures in breast cancer microarray data using Bayesian techniques [J].
Carrivick, L. ;
Rogers, S. ;
Clark, J. ;
Campbell, C. ;
Girolami, M. ;
Cooper, C. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2006, 3 (08) :367-381
[10]  
Caruana R, 2006, IEEE DATA MINING, P107