Mass balance of the northeast sector of the Greenland ice sheet:: a remote-sensing perspective

被引:13
|
作者
Rignot, E
Buscarlet, G
Csathó, B
Gogineni, S
Krabill, W
Schmeltz, M
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA
[3] Univ Kansas, Radar Syst & Remote Sensing Lab, Lawrence, KS 66045 USA
[4] NASA, Goddard Space Flight Ctr, Wallops Flight Facil, Lab Hydrospher Proc, Wallops Isl, VA 23337 USA
关键词
D O I
10.3189/172756500781832972
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Synthetic-aperture radar interferometry data and airborne ice-sounding radar (ISR) data are employed to obtain modern estimates of the inland ice production from Nioghalvfjerdsbrae (NB) and Zachariae Isstrom (ZI), the two largest glaciers draining the northeast sector of the Greenland ice sheet. Ice fluxes are measured at the grounding line (14.2 +/- 1 km(3) ice a(-1) for NB and 10.8 +/- 1 km(3) ice a(-1) for ZI) with an ice thickness deduced from ice-shelf hydrostatic equilibrium, and along an ISR profile collected upstream of the grounding line (14.3 +/- 0.7 km(3) ice a(-1) for NB and 11.6 +/- 0.6 km(3) ice a(-1) for ZI). Balance fluxes calculated from a map of snow accumulation and model predictions of surface melt are 11.9 +/- 2 km(3) ice a(-1) for NB and 10.0 +/- 2 km(3) ice a(-1) for ZI at the grounding line, and 12.2 and 10.3 km(3) ice a(-1), respectively, at the ISR line. The two glaciers therefore exhibit a negative mass balance equivalent to 14% of their balance flux, with a +/-12% uncertainty. Independently, we detect a retreat of the grounding line of NB between 1992 and 1996 which is larger at the glacier center (920 +/- 250 m) than on the sides (240 +/- 50 m). The corresponding ice-thinning rates (2 +/- 1 m a(-1) at the glacier center and 0.6 +/- 0.3 m a(-1) on the sides) are too large to be accommodated by temporal changes in ablation or accumulation, and must be due to dynamic thinning.
引用
收藏
页码:265 / 273
页数:9
相关论文
共 50 条
  • [1] Greenland ice sheet mass balance: a review
    Khan, Shfaqat A.
    Aschwanden, Andy
    Bjork, Anders A.
    Wahr, John
    Kjeldsen, Kristian K.
    Kjaer, Kurt H.
    REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (04)
  • [2] A new ice sheet model validated by remote sensing of the Greenland ice sheet
    Ren, Diandong
    Fu, Rong
    Karoly, David J.
    Leslie, Lance M.
    Chen, Jianli
    Wilson, Clark R.
    CENTRAL EUROPEAN JOURNAL OF GEOSCIENCES, 2010, 2 (04): : 501 - 513
  • [3] Mass balance of the Greenland ice sheet at high elevations
    Thomas, R
    Akins, T
    Csatho, B
    Fahnestock, M
    Gogineni, P
    Kim, C
    Sonntag, J
    SCIENCE, 2000, 289 (5478) : 426 - 428
  • [4] A surface mass balance model for the Greenland ice sheet
    Bougamont, M
    Bamber, JL
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2005, 110 (F4)
  • [5] Mass balance and surface movement of the Greenland Ice Sheet at Summit, Central Greenland
    Hvidberg, CS
    Keller, K
    Gundestrup, NS
    Tscherning, CC
    Forsberg, R
    GEOPHYSICAL RESEARCH LETTERS, 1997, 24 (18) : 2307 - 2310
  • [6] Mass balance and surface movement of the Greenland Ice Sheet at Summit, central Greenland
    Hvidberg, C.S.
    Keller, K.
    Gundestrup, N.S.
    Tscherning, C.C.
    Forsberg, R.
    Geophysical Research Letters, 1997, 24 (18): : 2307 - 2310
  • [7] Mass balance of the greenland ice sheet from GRACE and surface mass balance modelling
    Zou F.
    Tenzer R.
    Fok H.S.
    Nichol J.E.
    Fok, Hok Sum (xshhuo@sgg.whu.edu.cn), 1600, MDPI AG, Postfach, Basel, CH-4005, Switzerland (12):
  • [8] Mass Balance of the Greenland Ice Sheet from GRACE and Surface Mass Balance Modelling
    Zou, Fang
    Tenzer, Robert
    Fok, Hok Sum
    Nichol, Janet E.
    WATER, 2020, 12 (07)
  • [10] Surface mass balance model intercomparison for the Greenland ice sheet
    Vernon, C. L.
    Bamber, J. L.
    Box, J. E.
    van den Broeke, M. R.
    Fettweis, X.
    Hanna, E.
    Huybrechts, P.
    CRYOSPHERE, 2013, 7 (02): : 599 - 614