Computation of traveling wave solution for nonlinear variable-order fractional model of modified equal width equation

被引:16
作者
Ali, Umair [1 ]
Mastoi, Sanaullah [2 ,3 ]
Othman, Wan Ainun Mior [2 ]
Khater, Mostafa M. A. [4 ,5 ]
Sohail, Muhammad [1 ]
机构
[1] Inst Space Technol, Dept Appl Math & Stat, POB 2750, Islamabad 44000, Pakistan
[2] Univ Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, Malaysia
[3] Quaid E Awam Univ Engn Sci & Technol Campus, Dept Basic Sci & Related Studies, Larkana 77150, Pakistan
[4] Jiangsu Univ, Fac Sci, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
[5] Obour Inst, Dept Math, Cairo 11828, Egypt
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 09期
关键词
space-time fractional modified equal width equation; Caputo derivative of fractional order; exp(-phi(xi)) method; PARTIAL-DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; SOLITON-SOLUTIONS; SCHRODINGER-EQUATION; SPATIAL ACCURACY; INSTABILITIES;
D O I
10.3934/math.2021584
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Variable-order fractional operators (VO-FO) have considered mathematically formalized recently. The opportunity of verbalizing evolutionary leading equations has led to the effective application to the modeling of composite physical problems ranging from mechanics to transport processes, to control theory, to biology. In this paper, find the closed form traveling wave solutions for nonlinear variable-order fractional evolution equations reveal in all fields of sciences and engineering. The variable-order evolution equation is an impressive mathematical model describes the complex dynamical problems. Here, we discuss space-time variable-order fractional modified equal width equation (MEWE) and used exp(-phi(xi)) method in the sense of Caputo fractional-order derivative. Based on variable order derivative and traveling wave transformation convert equation into nonlinear ordinary differential equation (ODE). As a result, constructed new exact solutions for nonlinear space-time variable-order fractional MEWE. It clearly shows that the nonlinear variable-order evolution equations are somewhat natural and efficient in mathematical physics.
引用
收藏
页码:10055 / 10069
页数:15
相关论文
共 68 条
[41]  
Katsikadelis J. T, 2018, NUMERICAL SOLUTION V
[42]   Nonlinear dispersive instabilities in Kelvin-Helmholtz magnetohydrodynamic flows [J].
Khater, AH ;
Callebaut, DK ;
Seadawy, AR .
PHYSICA SCRIPTA, 2003, 67 (04) :340-349
[43]   Nonlinear dispersive Rayleigh-Taylor instabilities in magnetohydrodynamic flows [J].
Khater, AH ;
Callebaut, DK ;
Malfliet, W ;
Seadawy, AR .
PHYSICA SCRIPTA, 2001, 64 (06) :533-547
[44]   On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control [J].
Li, Jun-Feng ;
Jahanshahi, Hadi ;
Kacar, Sezgin ;
Chu, Yu-Ming ;
Gomez-Aguilar, J. F. ;
Alotaibi, Naif D. ;
Alharbi, Khalid H. .
CHAOS SOLITONS & FRACTALS, 2021, 145
[45]   Dispersive traveling wave solutions of the Equal-Width and Modified Equal-Width equations via mathematical methods and its applications [J].
Lu, Dianchen ;
Seadawy, Aly R. ;
Ali, Asghar .
RESULTS IN PHYSICS, 2018, 9 :313-320
[46]   On the multi-waves, interaction and Peregrine-like rational solutions of perturbed Radhakrishnan-Kundu-Lakshmanan equation [J].
Ozkan, Yesim Saglam ;
Yasar, Emrullah ;
Seadawy, Aly R. .
PHYSICA SCRIPTA, 2020, 95 (08)
[47]   Lump and Interaction solutions of a geophysical Korteweg-de Vries equation [J].
Rizvi, S. T. R. ;
Seadawy, Aly R. ;
Ashraf, F. ;
Younis, M. ;
Iqbal, H. ;
Baleanu, Dumitru .
RESULTS IN PHYSICS, 2020, 19
[48]  
Samko S. G., 1993, Integral Transforms and Special Functions, V1, P277, DOI [DOI 10.1080/10652469308819027, 10.1080/10652469308819027]
[49]   Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma [J].
Seadavvy, Aly R. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (01) :201-212
[50]   Analytical mathematical approaches for the double-chain model of DNA by a novel computational technique [J].
Seadawy, Aly R. ;
Bilal, M. ;
Younis, M. ;
Rizvi, S. T. R. ;
Althobaiti, Saad ;
Makhlouf, M. M. .
CHAOS SOLITONS & FRACTALS, 2021, 144