Exotic Galilean Symmetry and Non-Commutative Mechanics

被引:49
|
作者
Horvathy, Peter A. [1 ]
Martina, Luigi [2 ,3 ]
Stichel, Peter C.
机构
[1] Univ Tours, Lab Math & Phys Theor, F-37200 Tours, France
[2] Univ Salento, Dipartimento Fis, I-73100 Lecce, Italy
[3] Sez INFN Lecce, I-73100 Lecce, Italy
关键词
noncommutative spaces; Galilean symmetry; dynamical systems; quantum field theory; BERRY PHASE CORRECTION; QUANTUM-MECHANICS; ELECTROMAGNETIC-FIELD; RELATIVISTIC PARTICLE; CENTRAL EXTENSION; ELECTRON-DENSITY; SPIN PARTICLE; ANYONS; MODEL; SPACE;
D O I
10.3842/SIGMA.2010.060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some aspects of the "exotic" particle, associated with the two-parameter central extension of the planar Galilei group are reviewed. A fundamental property is that it has non-commuting position coordinates. Other and generalized non-commutative models are also discussed. Minimal as well as anomalous coupling to an external electromagnetic field is presented. Supersymmetric extension is also considered. Exotic Galilean symmetry is also found in Moyal field theory. Similar equations arise for a semiclassical Bloch electron, used to explain the anomalous/spin/optical Hall effects.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Exotic Galilean symmetry in the non-commutative plane and the Hall effect
    Duval, C
    Horváthy, PA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (47): : 10097 - 10107
  • [3] Noncommutative mechanics and exotic Galilean symmetry
    L. Martina
    Theoretical and Mathematical Physics, 2011, 167 : 816 - 825
  • [4] Non-commutative quantum mechanics in three dimensions and rotational symmetry
    Sinha, Debabrata
    Chakraborty, Biswajit
    Scholtz, Frederik G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (10)
  • [5] Dirac Oscillator in a Galilean Covariant Non-commutative Space
    G. R. de Melo
    M. de Montigny
    P. J. Pompeia
    E. S. Santos
    International Journal of Theoretical Physics, 2013, 52 : 441 - 457
  • [6] Dirac Oscillator in a Galilean Covariant Non-commutative Space
    de Melo, G. R.
    de Montigny, M.
    Pompeia, P. J.
    Santos, E. S.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (02) : 441 - 457
  • [7] Non-commutative supersymmetric quantum mechanics
    Das, Ashok
    Falomir, H.
    Gamboa, J.
    Mendez, F.
    PHYSICS LETTERS B, 2009, 670 (4-5) : 407 - 415
  • [8] Quantum mechanics on non-commutative plane
    Demetrian, M
    Kochan, D
    ACTA PHYSICA SLOVACA, 2002, 52 (01) : 1 - 9
  • [9] Kohn condition and exotic Newton-Hooke symmetry in the non-commutative Landau problem
    Zhang, P. -M.
    Horvathy, P. A.
    PHYSICS LETTERS B, 2012, 706 (4-5) : 442 - 446
  • [10] Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry
    Alvarez, Pedro D.
    Gomis, Joaquim
    Kamimura, Kiyoshi
    Plyushchay, Mikhail S.
    PHYSICS LETTERS B, 2008, 659 (05) : 906 - 912