Open-Set Recognition with Gaussian Mixture Variational Autoencoders

被引:0
|
作者
Cao, Alexander [1 ]
Luo, Yuan [2 ]
Klabjan, Diego [1 ]
机构
[1] Northwestern Univ, Dept Ind Engn & Management Sci, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Prevent Med, Evanston, IL 60208 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In inference, open-set classification is to either classify a sample into a known class from training or reject it as an unknown class. Existing deep open-set classifiers train explicit closed-set classifiers, in some cases disjointly utiliz-ing reconstruction, which we find dilutes the latent representation's ability to distinguish unknown classes. In contrast, we train our model to cooperatively learn reconstruction and perform class-based clustering in the latent space. With this, our Gaussian mixture variational autoencoder (GMVAE) achieves more accurate and robust open-set classification results, with an average F1 increase of 0.26, through extensive experiments aided by analytical results.
引用
收藏
页码:6877 / 6884
页数:8
相关论文
共 50 条
  • [1] Learning multiple gaussian prototypes for open-set recognition
    Liu, Jiaming
    Tian, Jun
    Han, Wei
    Qin, Zhili
    Fan, Yulu
    Shao, Junming
    INFORMATION SCIENCES, 2023, 626 : 738 - 753
  • [2] Noise-robust open-set speaker recognition using noise-dependent Gaussian mixture classifier
    Gong, YF
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 133 - 136
  • [3] An open-set framework for underwater image classification using autoencoders
    Akhtarshenas, Azim
    Toosi, Ramin
    SN APPLIED SCIENCES, 2022, 4 (08):
  • [4] Toward Open-Set Face Recognition
    Gunther, Manuel
    Cruz, Steve
    Rudd, Ethan M.
    Boult, Terrance E.
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 573 - 582
  • [5] Open-Set Facial Expression Recognition
    Zhang, Yuhang
    Yao, Yue
    Liu, Xuannan
    Qin, Lixiong
    Wang, Wenjing
    Deng, Weihong
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 646 - 654
  • [6] An open-set framework for underwater image classification using autoencoders
    Azim Akhtarshenas
    Ramin Toosi
    SN Applied Sciences, 2022, 4
  • [7] Learning Placeholders for Open-Set Recognition
    Zhou, Da-Wei
    Ye, Han-Jia
    Zhan, De-Chuan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4399 - 4408
  • [8] Variational embedding of protein folding simulations using Gaussian mixture variational autoencoders
    Ghorbani, Mahdi
    Prasad, Samarjeet
    Klauda, Jeffery B.
    Brooks, Bernard R.
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (19):
  • [9] OPEN-SET RECOGNITION FOR FACIAL-EXPRESSION RECOGNITION
    Uchida, Mihiro
    Orihashi, Shota
    Takashima, Akihiko
    Yamazaki, Yoshihiro
    Masumura, Ryo
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 780 - 784
  • [10] Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding
    Yang, Linxiao
    Cheung, Ngai-Man
    Li, Jiaying
    Fang, Jun
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6449 - 6458