The one-dimensional spinless Salpeter Coulomb problem with minimal length

被引:10
作者
Chargui, Y. [1 ]
Trabelsi, A. [1 ]
Chetouani, L. [2 ]
机构
[1] Fac Sci Tunis, Unite Rech Phys Nucl & Hautes Energies, Tunis 1080, Tunisia
[2] Univ Constantine, Dept Phys Theor, Inst Phys, Constantine, Algeria
关键词
Spinless Salpeter equation; Coulomb potential; Minimal length; RELATIVISTIC WAVE-EQUATIONS; UNCERTAINTY RELATION; DISCRETE SPECTRA; DIRAC OSCILLATOR; DEFORMED SPACE; ENERGY BOUNDS; STATES; MASS;
D O I
10.1016/j.physleta.2010.03.041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact analytical treatment of the semi-relativistic spotless Salpeter equation with a one-dimensional Coulomb interaction in the context of quantum mechanics with modified Heisenberg algebra implying the existence of a minimal length. The problem is tackled in the momentum space representation. The bound-state energy equation and the corresponding wave functions are exactly obtained. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2243 / 2247
页数:5
相关论文
共 50 条
  • [31] Heat capacity of one-dimensional Kane oscillator
    Babanli, A. M.
    [J]. LOW TEMPERATURE PHYSICS, 2023, 49 (10) : 1145 - 1147
  • [32] Electroconvection in one-dimensional liquid crystal cells
    Huh, Jong-Hoon
    [J]. PHYSICAL REVIEW E, 2018, 97 (04)
  • [33] Spin dynamics in one-dimensional optical lattices
    Zhang, Huirong
    Zhai, Yueyang
    Chen, Xuzong
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (02)
  • [34] Superstatistical properties of the one-dimensional Dirac oscillator
    Boumali A.
    Serdouk F.
    Dilmi S.
    [J]. Physica A: Statistical Mechanics and its Applications, 2020, 553
  • [35] Topological superconductors in one-dimensional mosaic lattices
    Zeng, Qi-Bo
    Lu, Rong
    You, Li
    [J]. EPL, 2021, 135 (01)
  • [36] Fractionalization of Itinerant Anyons in One-Dimensional Chains
    Poilblanc, Didier
    Troyer, Matthias
    Ardonne, Eddy
    Bonderson, Parsa
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (20)
  • [37] Commensurability Oscillations in One-Dimensional Graphene Superlattices
    Drienovsky, Martin
    Joachimsmeyer, Jonas
    Sandner, Andreas
    Liu, Ming-Hao
    Taniguchi, Takashi
    Watanabe, Kenji
    Richter, Klaus
    Weiss, Dieter
    Eroms, Jonathan
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (02)
  • [38] Viscous Dissipation in One-Dimensional Quantum Liquids
    Matveev, K. A.
    Pustilnik, M.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (03)
  • [39] Edge singularities in the one-dimensional Bariev model
    Schlottmann, P.
    [J]. NUCLEAR PHYSICS B, 2019, 949
  • [40] One-dimensional semirelativity for electrons in carbon nanotubes
    Zawadzki, Wlodek
    [J]. PHYSICAL REVIEW B, 2006, 74 (20):