The one-dimensional spinless Salpeter Coulomb problem with minimal length

被引:10
作者
Chargui, Y. [1 ]
Trabelsi, A. [1 ]
Chetouani, L. [2 ]
机构
[1] Fac Sci Tunis, Unite Rech Phys Nucl & Hautes Energies, Tunis 1080, Tunisia
[2] Univ Constantine, Dept Phys Theor, Inst Phys, Constantine, Algeria
关键词
Spinless Salpeter equation; Coulomb potential; Minimal length; RELATIVISTIC WAVE-EQUATIONS; UNCERTAINTY RELATION; DISCRETE SPECTRA; DIRAC OSCILLATOR; DEFORMED SPACE; ENERGY BOUNDS; STATES; MASS;
D O I
10.1016/j.physleta.2010.03.041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an exact analytical treatment of the semi-relativistic spotless Salpeter equation with a one-dimensional Coulomb interaction in the context of quantum mechanics with modified Heisenberg algebra implying the existence of a minimal length. The problem is tackled in the momentum space representation. The bound-state energy equation and the corresponding wave functions are exactly obtained. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2243 / 2247
页数:5
相关论文
共 50 条
  • [21] Different types of dimensional crossover in quasi-one-dimensional spinless fermion systems
    Rozhkov, A. V.
    PHYSICAL REVIEW B, 2012, 85 (04)
  • [22] The One-dimensional Box Problem and the Dirac Oscillator in R-Minkowski Spacetime
    Asli, A.
    Foughali, T.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (06)
  • [23] The Riemann problem for the one-dimensional compressible flow of a van der Waals gas
    Pang, Yicheng
    Hu, Min
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [24] One-dimensional hydrogen atom
    Loudon, Rodney
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2185):
  • [25] The inverse Ising problem for one-dimensional chains with arbitrary finite-range couplings
    Gori, Giacomo
    Trombettoni, Andrea
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [26] First and second-order relativistic corrections to the two and higher-dimensional isotropic harmonic oscillator obeying the spinless Salpeter equation
    Edery, Ariel
    Laporte, Philippe
    JOURNAL OF PHYSICS COMMUNICATIONS, 2018, 2 (02):
  • [27] On the Eigensolutions of the One-Dimensional Kemmer Oscillator
    Boumali, A.
    TURKISH JOURNAL OF PHYSICS, 2007, 31 (06): : 307 - 315
  • [28] One-dimensional planar topological laser
    Palatnik, Alexander
    Sudzius, Markas
    Meister, Stefan
    Leo, Karl
    NANOPHOTONICS, 2021, 10 (09) : 2459 - 2465
  • [29] One-dimensional Dirac oscillator with generalized Snyder model in a thermal bath
    Boussaid, Chaib
    Benzair, Hadjira
    Boudjedaa, Tahar
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2024, 39 (31):
  • [30] Heat capacity of one-dimensional Kane oscillator
    Babanli, A. M.
    LOW TEMPERATURE PHYSICS, 2023, 49 (10) : 1145 - 1147