A Bayesian Nonparametric Approach to Inference for Quantile Regression

被引:75
作者
Taddy, Matthew A. [1 ]
Kottas, Athanasios [2 ]
机构
[1] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Dirichlet process mixture model; Markov chain Monte Carlo; Multivariate normal mixture; Tobit quantile regression; MIXTURES; MODEL;
D O I
10.1198/jbes.2009.07331
中图分类号
F [经济];
学科分类号
02 ;
摘要
We develop a Bayesian method for nonparametric model based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the covariates, with posterior inference for different quantile curves emerging from the conditional response distribution given the covariates. An extension to allow for partially observed responses leads to a novel Tobit quantile regression framework. We use simulated data sets and two data examples from the literature to illustrate the capacity of the model to uncover nonlinearities in quantile regression curves, as well as nonstandard features in the response distribution.
引用
收藏
页码:357 / 369
页数:13
相关论文
共 34 条
[1]   TOBIT MODELS - A SURVEY [J].
AMEMIYA, T .
JOURNAL OF ECONOMETRICS, 1984, 24 (1-2) :3-61
[2]  
[Anonymous], 1997, MONTE CARLO IMPLEMEN
[3]   MIXTURES OF DIRICHLET PROCESSES WITH APPLICATIONS TO BAYESIAN NONPARAMETRIC PROBLEMS [J].
ANTONIAK, CE .
ANNALS OF STATISTICS, 1974, 2 (06) :1152-1174
[4]   FERGUSON DISTRIBUTIONS VIA POLYA URN SCHEMES [J].
BLACKWELL, D ;
MACQUEEN, JB .
ANNALS OF STATISTICS, 1973, 1 (02) :353-355
[5]   An alternative estimator for the censored quantile regression model [J].
Buchinsky, M ;
Hahn, JY .
ECONOMETRICA, 1998, 66 (03) :653-671
[6]   A semiparametric Bayesian model for randomised block designs [J].
Bush, CA ;
MacEachern, SN .
BIOMETRIKA, 1996, 83 (02) :275-285
[7]   Nonparametric applications of Bayesian inference [J].
Chamberlain, G ;
Imbens, GW .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2003, 21 (01) :12-18
[8]   BAYES INFERENCE IN THE TOBIT CENSORED REGRESSION-MODEL [J].
CHIB, S .
JOURNAL OF ECONOMETRICS, 1992, 51 (1-2) :79-99
[9]   Non-crossing non-parametric estimates of quantile curves [J].
Dette, Holger ;
Volgushev, Stanislav .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :609-627
[10]   Approximate Bayesian inference for quantiles [J].
Dunson, DB ;
Taylor, JA .
JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (03) :385-400