Application of extreme learning machine to epileptic seizure detection based on lagged Poincare plots

被引:13
|
作者
Song, Jiang-Ling [1 ]
Zhang, Rui [1 ]
机构
[1] Northwest Univ, Med Big Data Res Ctr, Xian, Peoples R China
关键词
Epilepsy; EEG; Lagged Poincare plot; Extreme learning machine (ELM); EEG; CLASSIFICATION; ENTROPY; PREDICTION;
D O I
10.1007/s11045-016-0419-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Epilepsy is a serious brain disorder affecting nearly 1 % of the world's population. Detecting the epileptic seizures in EEGs is not only the first step for the diagnosis, but also a significant evidence for the treatment follow-up in epilepsy patients. In recent years, automatic seizure detection using epileptic EEGs has been developed with the significance of relieving the heavy workload of traditional visual inspection for diagnosing epilepsy. The appropriate feature extraction method and efficient classifier are recognized to be crucial in the successful realization. This paper first designs a novel lagged-PoincaA center dot e-based feature extraction method on the basis of a class of lagged PoincaA center dot e plots, as well as the scatter-degree and distribution-uniformity of them which are explored to characterize the lag-T PoincaA center dot e plots from the quantitative point of view. Then we propose an automatic seizure detection method LPBF-ELM which integrates the lagged-PoincaA center dot e-based feature LPBF and extreme learning machine (ELM). Experimental results on Bonn database demonstrate that the proposed method LPBF-ELM does a good job in epileptic seizure detection while preserving the efficiency and simplicity.
引用
收藏
页码:945 / 959
页数:15
相关论文
共 50 条
  • [21] Epileptic Seizure Detection Using Machine Learning: Taxonomy, Opportunities, and Challenges
    Farooq, Muhammad Shoaib
    Zulfiqar, Aimen
    Riaz, Shamyla
    DIAGNOSTICS, 2023, 13 (06)
  • [22] Automatic Detection of Epileptic Seizures Based on Entropies and Extreme Learning Machine
    Cheng, Xiaolin
    Xu, Meiling
    Han, Min
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV, 2017, 10637 : 410 - 418
  • [23] Machine Learning-Based Epileptic Seizure Detection Methods Using Wavelet and EMD-Based Decomposition Techniques: A Review
    Thangarajoo, Rabindra Gandhi
    Reaz, Mamun Bin Ibne
    Srivastava, Geetika
    Haque, Fahmida
    Ali, Sawal Hamid Md
    Bakar, Ahmad Ashrif A.
    Bhuiyan, Mohammad Arif Sobhan
    SENSORS, 2021, 21 (24)
  • [24] Automated detection of epileptic EEGs using a novel fusion feature and extreme learning machine
    Song, Jiang-Ling
    Hu, Wenfeng
    Zhang, Rui
    NEUROCOMPUTING, 2016, 175 : 383 - 391
  • [25] Epileptic seizure detection on EEG signals using machine learning techniques and advanced preprocessing methods
    Mahjoub, Chahira
    Jeannes, Regine Le Bouquin
    Lajnef, Tarek
    Kachouri, Abdennaceur
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2020, 65 (01): : 33 - 50
  • [26] Comparison of Automated Machine Learning (AutoML) Tools for Epileptic Seizure Detection Using Electroencephalograms (EEG)
    Lenkala, Swetha
    Marry, Revathi
    Gopovaram, Susmitha Reddy
    Akinci, Tahir Cetin
    Topsakal, Oguzhan
    COMPUTERS, 2023, 12 (10)
  • [27] A New Neural Mass Model Driven Method and Its Application in Early Epileptic Seizure Detection
    Song, Jiang-Ling
    Li, Qiang
    Zhang, Bo
    Westover, M. Brandon
    Zhang, Rui
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (08) : 2194 - 2205
  • [28] Deep learning based epileptic seizure detection with EEG data
    Poorani, S.
    Balasubramanie, P.
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023,
  • [29] Epileptic Seizure Detection for Imbalanced Datasets Using an Integrated Machine Learning Approach
    Masum, Mohammad
    Shahriar, Hossain
    Haddad, Hisham M.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 5416 - 5419
  • [30] Epileptic seizure detection using hybrid machine learning methods
    Subasi, Abdulhamit
    Kevric, Jasmin
    Canbaz, M. Abdullah
    NEURAL COMPUTING & APPLICATIONS, 2019, 31 (01) : 317 - 325