Harmonic means of Wishart random matrices

被引:2
作者
Lodhia, Asad [1 ]
机构
[1] Univ Michigan, Dept Stat, 256 West Hall,1085 South Univ Ave, Ann Arbor, MI 48109 USA
关键词
Free probability; random matrices; covariance estimation; EIGENVALUE;
D O I
10.1142/S2010326321500167
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use free probability to compute the limiting spectral properties of the harmonic mean of n i.i.d. Wishart random matrices W-i whose limiting aspect ratio is gamma is an element of (0, 1) when E[W-i] = I. We demonstrate an interesting phenomenon where the harmonic mean H of the n Wishart matrices is closer in operator norm to E[W-i] than the arithmetic mean A for small n, after which the arithmetic mean is closer. We also prove some results for the general case where the expectation of the Wishart matrices are not the identity matrix.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Cumulants for Random Matrices as Convolutions on the Symmetric Group, II
    M. Capitaine
    M. Casalis
    Journal of Theoretical Probability, 2007, 20 : 505 - 533
  • [42] RECTANGULAR RANDOM MATRICES, ENTROPY, AND FISHER'S INFORMATION
    Benaych-Georges, Florent
    JOURNAL OF OPERATOR THEORY, 2009, 62 (02) : 369 - +
  • [43] Cumulants for random matrices as convolutions on the symmetric group, II
    Capitaine, M.
    Casalis, M.
    JOURNAL OF THEORETICAL PROBABILITY, 2007, 20 (03) : 505 - 533
  • [44] Approximate Condition Number Distribution of Complex Non-central Correlated Wishart Matrices
    Wei, Lu
    Tirkkonen, Olav
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [45] Second order freeness and fluctuations of random matrices: II. Unitary random matrices
    Mingo, James A.
    Sniady, Piotr
    Speicher, Roland
    ADVANCES IN MATHEMATICS, 2007, 209 (01) : 212 - 240
  • [46] Random matrices with exchangeable entries
    Kirsch, Werner
    Kriecherbauer, Thomas
    REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (07)
  • [47] The rank of sparse random matrices
    Coja-Oghlan, Amin
    Ergur, Alperen A.
    Gao, Pu
    Hetterich, Samuel
    Rolvien, Maurice
    RANDOM STRUCTURES & ALGORITHMS, 2023, 62 (01) : 68 - 130
  • [49] Random matrices: Probability of normality
    Deneanu, Andrei
    Vu, Van
    ADVANCES IN MATHEMATICS, 2019, 346 : 887 - 907
  • [50] Deformed ensembles of random matrices
    Peche, Sandrine
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 1159 - 1174