Harmonic means of Wishart random matrices

被引:2
|
作者
Lodhia, Asad [1 ]
机构
[1] Univ Michigan, Dept Stat, 256 West Hall,1085 South Univ Ave, Ann Arbor, MI 48109 USA
关键词
Free probability; random matrices; covariance estimation; EIGENVALUE;
D O I
10.1142/S2010326321500167
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use free probability to compute the limiting spectral properties of the harmonic mean of n i.i.d. Wishart random matrices W-i whose limiting aspect ratio is gamma is an element of (0, 1) when E[W-i] = I. We demonstrate an interesting phenomenon where the harmonic mean H of the n Wishart matrices is closer in operator norm to E[W-i] than the arithmetic mean A for small n, after which the arithmetic mean is closer. We also prove some results for the general case where the expectation of the Wishart matrices are not the identity matrix.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Noncentral complex Wishart matrices: Moments and correlation of minors
    Tralli, Velio
    Conti, Andrea
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2022, 11 (01)
  • [22] Free probability and random matrices
    Speicher, Roland
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 477 - 501
  • [23] The Polynomial Method for Random Matrices
    N. Raj Rao
    Alan Edelman
    Foundations of Computational Mathematics, 2008, 8 : 649 - 702
  • [24] The Polynomial Method for Random Matrices
    Rao, N. Raj
    Edelman, Alan
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (06) : 649 - 702
  • [25] STATISTICAL EIGEN-INFERENCE FROM LARGE WISHART MATRICES
    Rao, N. Raj
    Mingo, James A.
    Speicher, Roland
    Edelman, Alan
    ANNALS OF STATISTICS, 2008, 36 (06) : 2850 - 2885
  • [26] The asymptotic infinitesimal distribution of a real Wishart random matrix
    Mingo, James A.
    Vazquez-Becerra, Josue
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (01)
  • [27] Rectangular random matrices, related convolution
    Florent Benaych-Georges
    Probability Theory and Related Fields, 2009, 144 : 471 - 515
  • [28] Rectangular random matrices, related convolution
    Benaych-Georges, Florent
    PROBABILITY THEORY AND RELATED FIELDS, 2009, 144 (3-4) : 471 - 515
  • [29] Bridges and random truncations of random matrices
    Beffara, Vincent
    Donati-Martin, Catherine
    Rouault, Alain
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2014, 3 (02)
  • [30] Cumulants for random matrices as convolutions on the symmetric group
    Capitaine, M
    Casalis, M
    PROBABILITY THEORY AND RELATED FIELDS, 2006, 136 (01) : 19 - 36