Time-splitting errors in the numerical integration of semilinear systems of ordinary differential equations

被引:0
作者
Murthy, ASV
Nanjundiah, RS
机构
[1] Indian Inst Sci, TIFR, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, CAOS, Bangalore 560012, Karnataka, India
关键词
D O I
10.1175/1520-0493(2001)129<3921:TSEITN>2.0.CO;2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this paper the authors analyze splitting errors in numerical schemes for a semilinear system of ordinary differential equations (ODEs). It is well known that errors occur even when splitting the continuous fully linear system analytically, consequently splitting numerical schemes introduces additional errors. A general approach to delineate and avoid such errors for the above-mentioned class of ODEs is proposed.
引用
收藏
页码:3921 / 3926
页数:6
相关论文
共 50 条
[41]   Secondary bifurcations in semilinear ordinary differential equations [J].
Kan, Toru .
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (05)
[42]   CLASSIFICATION OF THE SYSTEMS OF ORDINARY DIFFERENTIAL-EQUATIONS AND PRACTICAL ASPECTS IN THE NUMERICAL-INTEGRATION OF LARGE SYSTEMS [J].
ZLATEV, Z ;
WASNIEWSKI, J ;
SCHAUMBURG, K .
COMPUTERS & CHEMISTRY, 1980, 4 (01) :13-18
[43]   The numerical simulation for stiff systems of ordinary differential equations [J].
Darvishi, M. T. ;
Khani, F. ;
Soliman, A. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) :1055-1063
[44]   NUMERICAL INTEGRATION OF LARGE SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS BY MEANS OF INDIVIDUALLY VARIABLE STEP SIZE [J].
SCHLUTER, A ;
PIOTROWS.P .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1968, 48 (08) :T102-&
[45]   Numerical study of time-splitting spectral discretizations of nonlinear Schrodinger equations in the semiclassical regimes [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (01) :27-64
[46]   FREQUENCY ESTIMATES OF ERRORS OF NUMERICAL-INTEGRATION OF DIFFERENTIAL EQUATIONS [J].
KALNIN, VM .
DOKLADY AKADEMII NAUK SSSR, 1975, 223 (01) :38-41
[47]   EFFICIENT INTEGRATION METHODS FOR STIFF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS [J].
LINIGER, W ;
WILLOUGHBY, RA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1970, 7 (01) :47-+
[48]   A NUMERICAL INTEGRATION TECHNIQUE FOR ORDINARY DIFFERENTIAL EQUATIONS WITH WIDELY SEPARATED EIGENVALUES [J].
FOWLER, ME ;
WARTEN, RM .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1967, 11 (05) :537-&
[50]   Numerical Integration Error in Linear Ordinary Differential Equations—Characteristic Root Distortion by Integration [J].
Yamakawa, Takuya ;
Kurihara, Yosuke ;
Kobayashi, Kazuyuki ;
Watanabe, Kajiro .
IEEE Access, 2025, 13 :66188-66196