Time-splitting errors in the numerical integration of semilinear systems of ordinary differential equations

被引:0
作者
Murthy, ASV
Nanjundiah, RS
机构
[1] Indian Inst Sci, TIFR, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, CAOS, Bangalore 560012, Karnataka, India
关键词
D O I
10.1175/1520-0493(2001)129<3921:TSEITN>2.0.CO;2
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In this paper the authors analyze splitting errors in numerical schemes for a semilinear system of ordinary differential equations (ODEs). It is well known that errors occur even when splitting the continuous fully linear system analytically, consequently splitting numerical schemes introduces additional errors. A general approach to delineate and avoid such errors for the above-mentioned class of ODEs is proposed.
引用
收藏
页码:3921 / 3926
页数:6
相关论文
共 50 条
[31]   MULTISTEP METHOD FOR NUMERICAL-INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS [J].
USMANI, RA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1972, 23 (03) :465-483
[32]   SOME NEW METHODS FOR THE NUMERICAL INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS [J].
FOX, L ;
GOODWIN, ET .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1949, 45 (03) :373-388
[33]   Numerical integration of ordinary differential equations with rapidly oscillatory factors [J].
Bunder, J. E. ;
Roberts, A. J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 282 :54-70
[34]   NUMERICAL-INTEGRATION OF ORDINARY DIFFERENTIAL-EQUATIONS ON MANIFOLDS [J].
CROUCH, PE ;
GROSSMAN, R .
JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (01) :1-33
[35]   SELECTION OF METHODS FOR NUMERICAL-INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS [J].
ANSCHUTZ, W .
ANGEWANDTE INFORMATIK, 1973, (11) :461-466
[36]   Approximately preserving symmetries in the numerical integration of ordinary differential equations [J].
Iserles, A ;
McLachlan, R ;
Zanna, A .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 1999, 10 :419-445
[38]   ON TESTING A SUBROUTINE FOR NUMERICAL-INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS [J].
KROGH, FT .
JOURNAL OF THE ACM, 1973, 20 (04) :545-562
[39]   Numerical study of time-splitting and space-time adaptive wavelet scheme for Schrodinger equations [J].
Zhang, R. ;
Zhang, K. ;
Zhou, Y. S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 195 (1-2) :263-273
[40]   Oscillatory bifurcation for semilinear ordinary differential equations [J].
Shibata, Tetsutaro .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (44) :1-13