TILT: Achieving Higher Fidelity on a Trapped-Ion Linear-Tape Quantum Computing Architecture

被引:9
作者
Wu, Xin-Chuan [1 ]
Debroy, Dripto M. [2 ]
Ding, Yongshan [1 ]
Baker, Jonathan M. [1 ]
Alexeev, Yuri [3 ]
Brown, Kenneth R. [4 ]
Chong, Frederic T. [1 ]
机构
[1] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA
[2] Duke Univ, Dept Phys, Durham, NC 27706 USA
[3] Argonne Natl Lab, Computat Sci Div, Lemont, IL USA
[4] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
来源
2021 27TH IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE (HPCA 2021) | 2021年
基金
美国国家科学基金会;
关键词
Quantum Computing; Trapped-ion Architecture; Circuit Optimization; DISCRETE LOGARITHMS; ALGORITHMS; SUPREMACY; GATES;
D O I
10.1109/HPCA51647.2021.00023
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Trapped-ion qubits are a leading technology for practical quantum computing. In this work, we present an architectural analysis of a linear-tape architecture for trapped ions. In order to realize our study, we develop and evaluate mapping and scheduling algorithms for this architecture. In particular, we introduce TILT, a linear "Turing-machine-like" architecture with a multilaser control "head," where a linear chain of ions moves back and forth under the laser head. We find that TILT can substantially reduce communication as compared with comparable-sized Quantum Charge Coupled Device (QCCD) architectures. We also develop two important scheduling heuristics for TILT. The first heuristic reduces the number of swap operations by matching data traveling in opposite directions into an "opposing swap.", and also avoids the maximum swap distance across the width of the head, as maximum swap distances make scheduling multiple swaps in one head position difficult. The second heuristic minimizes ion chain motion by scheduling the tape to the position with the maximal executable operations for every movement. We provide application performance results from our simulation, which suggest that TILT can outperform QCCD in a range of NISQ applications in terms of success rate (up to 4.35x and 1.95x on average). We also discuss using TILT as a building block to extend existing scalable trapped-ion quantum computing proposals.
引用
收藏
页码:153 / 166
页数:14
相关论文
共 90 条
  • [1] AlFailakawi M., 2014, AS PAC C COMP SCI EL
  • [2] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [3] An MINLP Model for Scheduling and Placement of Quantum Circuits with a Heuristic Solution Approach
    Bahreini, Tayebeh
    Mohammadzadeh, Naser
    [J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2015, 12 (03)
  • [4] Ball H., 2020, ARXIV PREPRINT ARXIV
  • [5] Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
    Ballance, C. J.
    Harty, T. P.
    Linke, N. M.
    Sepiol, M. A.
    Lucas, D. M.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (06)
  • [6] Digitized adiabatic quantum computing with a superconducting circuit
    Barends, R.
    Shabani, A.
    Lamata, L.
    Kelly, J.
    Mezzacapo, A.
    Heras, U. Las
    Babbush, R.
    Fowler, A. G.
    Campbell, B.
    Chen, Yu
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Jeffrey, E.
    Lucero, E.
    Megrant, A.
    Mutus, J. Y.
    Neeley, M.
    Neill, C.
    O'Malley, P. J. J.
    Quintana, C.
    Roushan, P.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Solano, E.
    Neven, H.
    Martinis, John M.
    [J]. NATURE, 2016, 534 (7606) : 222 - 226
  • [7] Deterministic quantum teleportation of atomic qubits
    Barrett, MD
    Chiaverini, J
    Schaetz, T
    Britton, J
    Itano, WM
    Jost, JD
    Knill, E
    Langer, C
    Leibfried, D
    Ozeri, R
    Wineland, DJ
    [J]. NATURE, 2004, 429 (6993) : 737 - 739
  • [8] Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
  • [9] Quantum complexity theory
    Bernstein, E
    Vazirani, U
    [J]. SIAM JOURNAL ON COMPUTING, 1997, 26 (05) : 1411 - 1473
  • [10] A Novel Approach for Nearest Neighbor Realization of 2D Quantum Circuits
    Bhattacharjee, Anirban
    Bandyopadhyay, Chandan
    Wille, Robert
    Drechsler, Rolf
    Rahaman, Hafizur
    [J]. 2018 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI), 2018, : 305 - 310