Modular classes of Jacobi bundles

被引:1
作者
Diallo, Mamadou Lamarana [1 ]
Wade, Aissa [2 ]
机构
[1] Univ Cheikh Anta Diop Dakar, Dept Math, Dakar, Senegal
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2021年 / 15卷 / 02期
关键词
Jacobi manifolds; Cohomology; Homology; Homogeneous Poisson mani-folds; Jacobi algebroids; GERSTENHABER ALGEBRAS;
D O I
10.1007/s40863-021-00227-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is the first part of a dilogy devoted to modular classes of Jacobi structures from the general line bundle perspective as well as their associated Lie algebroids. First, we explain the relationship between Jacobi algebroids and their associated Gerstenhaber-Jacobi algebras. Then, we show that given a Jacobi manifold, there is a differential complex associated to it whose differential operator is similar to the so-called Koszul-Brylinski operator. This allows us to define Jacobi homology for Jacobi bundles. Moreover, we show that there are generating operators for the Gerstenhaber-Jacobi algebra associated to the Atiyah algebroid DL whose sections are derivations of the associated line bundle L.
引用
收藏
页码:505 / 523
页数:19
相关论文
共 36 条
[1]   QUANTIZATION OF GAUGE-THEORIES WITH LINEARLY DEPENDENT GENERATORS [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICAL REVIEW D, 1983, 28 (10) :2567-2582
[2]   GAUGE ALGEBRA AND QUANTIZATION [J].
BATALIN, IA ;
VILKOVISKY, GA .
PHYSICS LETTERS B, 1981, 102 (01) :27-31
[3]   Remarks on Contact and Jacobi Geometry [J].
Bruce, Andrew James ;
Grabowska, Katarzyna ;
Grabowski, Janusz .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
[4]   THE MODULAR CLASS OF A POISSON MAP [J].
Caseiro, Raquel ;
Fernandes, Rui Loja .
ANNALES DE L INSTITUT FOURIER, 2013, 63 (04) :1285-1329
[5]   Jacobi structures and Spencer operators [J].
Crainic, Marius ;
Salazar, Maria Amelia .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (02) :504-521
[6]  
DAZORD P, 1991, J MATH PURE APPL, V70, P101
[7]   On the computation of the Lichnerowicz-Jacobi cohomology [J].
de León, M ;
López, B ;
Marrero, JC ;
Padrón, E .
JOURNAL OF GEOMETRY AND PHYSICS, 2003, 44 (04) :507-522
[8]   Lichnerowicz-Jacobi cohomology [J].
deLeon, M ;
Marrero, JC ;
Padron, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (17) :6029-6055
[9]  
DUFOUR JP, 1991, CR ACAD SCI I-MATH, V312, P137
[10]  
DUFOUR JP, 2005, PROGR MATH