Gate-Driven Pure Spin Current in Graphene

被引:45
作者
Lin, Xiaoyang [1 ]
Su, Li [1 ,2 ,3 ]
Si, Zhizhong [1 ]
Zhang, Youguang [1 ]
Bournel, Arnaud [2 ,3 ]
Zhang, Yue [1 ]
Klein, Jacques-Olivier [2 ,3 ]
Fert, Albert [1 ,4 ]
Zhao, Weisheng [1 ]
机构
[1] Beihang Univ, BDBC, Sch Elect & Informat Engn, Fert Beijing Res Inst, Beijing 100191, Peoples R China
[2] Univ Paris Saclay, Univ Paris Sud, Ctr Nanosci & Nanotechnol C2N, F-91405 Orsay, France
[3] CNRS, UMR 8622, F-91405 Orsay, France
[4] CNRS Thales, Unite Mixte Phys, F-91767 Palaiseau, France
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
BILAYER GRAPHENE; SPINTRONICS; TRANSPORT; DEVICES; LOGIC; ELECTRONICS; CIRCUITS; SYSTEMS;
D O I
10.1103/PhysRevApplied.8.034006
中图分类号
O59 [应用物理学];
学科分类号
摘要
The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.
引用
收藏
页数:8
相关论文
共 54 条
[51]   Observation of Long Spin-Relaxation Times in Bilayer Graphene at Room Temperature [J].
Yang, T. -Y. ;
Balakrishnan, J. ;
Volmer, F. ;
Avsar, A. ;
Jaiswal, M. ;
Samm, J. ;
Ali, S. R. ;
Pachoud, A. ;
Zeng, M. ;
Popinciuc, M. ;
Guentherodt, G. ;
Beschoten, B. ;
Oezyilmaz, B. .
PHYSICAL REVIEW LETTERS, 2011, 107 (04)
[52]   Electron spin relaxation in graphene with random Rashba field: comparison of the D'yakonov-Perel' and Elliott-Yafet-like mechanisms [J].
Zhang, P. ;
Wu, M. W. .
NEW JOURNAL OF PHYSICS, 2012, 14
[53]   Long-distance spin transport in high-mobility graphene on hexagonal boron nitride [J].
Zomer, P. J. ;
Guimaraes, M. H. D. ;
Tombros, N. ;
van Wees, B. J. .
PHYSICAL REVIEW B, 2012, 86 (16)
[54]   Spintronics: Fundamentals and applications [J].
Zutic, I ;
Fabian, J ;
Das Sarma, S .
REVIEWS OF MODERN PHYSICS, 2004, 76 (02) :323-410