Gate-Driven Pure Spin Current in Graphene

被引:42
作者
Lin, Xiaoyang [1 ]
Su, Li [1 ,2 ,3 ]
Si, Zhizhong [1 ]
Zhang, Youguang [1 ]
Bournel, Arnaud [2 ,3 ]
Zhang, Yue [1 ]
Klein, Jacques-Olivier [2 ,3 ]
Fert, Albert [1 ,4 ]
Zhao, Weisheng [1 ]
机构
[1] Beihang Univ, BDBC, Sch Elect & Informat Engn, Fert Beijing Res Inst, Beijing 100191, Peoples R China
[2] Univ Paris Saclay, Univ Paris Sud, Ctr Nanosci & Nanotechnol C2N, F-91405 Orsay, France
[3] CNRS, UMR 8622, F-91405 Orsay, France
[4] CNRS Thales, Unite Mixte Phys, F-91767 Palaiseau, France
来源
PHYSICAL REVIEW APPLIED | 2017年 / 8卷 / 03期
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
BILAYER GRAPHENE; SPINTRONICS; TRANSPORT; DEVICES; LOGIC; ELECTRONICS; CIRCUITS; SYSTEMS;
D O I
10.1103/PhysRevApplied.8.034006
中图分类号
O59 [应用物理学];
学科分类号
摘要
The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.
引用
收藏
页数:8
相关论文
共 54 条
  • [1] Electronic spin transport in dual-gated bilayer graphene
    Avsar, Ahmet
    Vera-Marun, Ivan Jesus
    Tan, Jun You
    Koon, Gavin Kok Wai
    Watanabe, Kenji
    Taniguchi, Takashi
    Adam, Shaffique
    Ozyilmaz, Barbaros
    [J]. NPG ASIA MATERIALS, 2016, 8 : e274 - e274
  • [2] Behin-Aein B, 2010, NAT NANOTECHNOL, V5, P266, DOI [10.1038/NNANO.2010.31, 10.1038/nnano.2010.31]
  • [3] The emergence of spin electronics in data storage
    Chappert, Claude
    Fert, Albert
    Van Dau, Frederic Nguyen
    [J]. NATURE MATERIALS, 2007, 6 (11) : 813 - 823
  • [4] Charged-impurity scattering in graphene
    Chen, J. -H.
    Jang, C.
    Adam, S.
    Fuhrer, M. S.
    Williams, E. D.
    Ishigami, M.
    [J]. NATURE PHYSICS, 2008, 4 (05) : 377 - 381
  • [5] Gate-tunable graphene spin valve
    Cho, Sungjae
    Chen, Yung-Fu
    Fuhrer, Michael S.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (12)
  • [6] Electronic transport in two-dimensional graphene
    Das Sarma, S.
    Adam, Shaffique
    Hwang, E. H.
    Rossi, Enrico
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (02) : 407 - 470
  • [7] Spin-based logic in semiconductors for reconfigurable large-scale circuits
    Dery, H.
    Dalal, P.
    Cywinski, L.
    Sham, L. J.
    [J]. NATURE, 2007, 447 (7144) : 573 - 576
  • [8] Pseudospin-driven spin relaxation mechanism in graphene
    Dinh Van Tuan
    Ortmann, Frank
    Soriano, David
    Valenzuela, Sergio O.
    Roche, Stephan
    [J]. NATURE PHYSICS, 2014, 10 (11) : 857 - 863
  • [9] Dlubak B, 2012, NAT PHYS, V8, P557, DOI [10.1038/NPHYS2331, 10.1038/nphys2331]
  • [10] Spin Lifetimes Exceeding 12 ns in Graphene Nonlocal Spin Valve Devices
    Droegeler, Marc
    Franzen, Christopher
    Volmer, Frank
    Pohlmann, Tobias
    Banszerus, Luca
    Wolter, Maik
    Watanabe, Kenji
    Taniguchi, Takashi
    Stampfer, Christoph
    Beschoten, Bernd
    [J]. NANO LETTERS, 2016, 16 (06) : 3533 - 3539