ROBUST DETECTION USING M-ESTIMATORS FOR HYPERSPECTRAL IMAGING
被引:0
作者:
Frontera-Pons, J.
论文数: 0引用数: 0
h-index: 0
机构:
Supelec, SONDRA Res Alliance, Cesson Sevigne, FranceSupelec, SONDRA Res Alliance, Cesson Sevigne, France
Frontera-Pons, J.
[1
]
Mahot, M.
论文数: 0引用数: 0
h-index: 0
机构:
Supelec, SONDRA Res Alliance, Cesson Sevigne, FranceSupelec, SONDRA Res Alliance, Cesson Sevigne, France
Mahot, M.
[1
]
Ovarlez, J. P.
论文数: 0引用数: 0
h-index: 0
机构:
Supelec, SONDRA Res Alliance, Cesson Sevigne, France
TSI, ONERA DEMR, French Aerosp Lab, Marseille, FranceSupelec, SONDRA Res Alliance, Cesson Sevigne, France
Ovarlez, J. P.
[1
,2
]
Pascal, F.
论文数: 0引用数: 0
h-index: 0
机构:
Supelec, SONDRA Res Alliance, Cesson Sevigne, FranceSupelec, SONDRA Res Alliance, Cesson Sevigne, France
Pascal, F.
[1
]
Chanussot, J.
论文数: 0引用数: 0
h-index: 0
机构:
Grenoble Inst Tech nology, GIPSA Lab, Grenoble, FranceSupelec, SONDRA Res Alliance, Cesson Sevigne, France
Chanussot, J.
[3
]
机构:
[1] Supelec, SONDRA Res Alliance, Cesson Sevigne, France
[2] TSI, ONERA DEMR, French Aerosp Lab, Marseille, France
[3] Grenoble Inst Tech nology, GIPSA Lab, Grenoble, France
来源:
2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS)
|
2012年
Hyperspectral data have been proved not to be multivariate normal but long tailed distributed. In order to take into account these features, the family of elliptical contoured distributions is proposed to describe noise statistical behavior. Although non-Gaussian models are assumed for background modeling and detectors design, the parameters estimation is still performed using classical Gaussian based estimators; as for the covariance matrix, generally determined according to the SCM approach. We discuss here the class of M-estimators as a robust alternative for background statistical characterization and highlight their outcome when used in an adaptive GLRT-LQ detector.