Reconstructing unknown quantum states using variational layerwise method

被引:3
作者
Xiao, Junxiang [1 ,2 ]
Wen, Jingwei [1 ,2 ]
Wei, Shijie [3 ]
Long, Guilu [1 ,2 ,3 ,4 ,5 ]
机构
[1] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[3] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[4] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
[5] Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
variational quantum algorithm; layerwise learning; quantum state reconstructing;
D O I
10.1007/s11467-022-1157-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In order to gain comprehensive knowledge of an arbitrary unknown quantum state, one feasible way is to reconstruct it, which can be realized by finding a series of quantum operations that can refactor the unitary evolution producing the unknown state. We design an adaptive framework that can reconstruct unknown quantum states at high fidelities, which utilizes SWAP test, parameterized quantum circuits (PQCs) and layerwise learning strategy. We conduct benchmarking on the framework using numerical simulations and reproduce states of up to six qubits at more than 96% overlaps with original states on average using PQCs trained by our framework, revealing its high applicability to quantum systems of different scales theoretically. Moreover, we perform experiments on a five-qubit IBM Quantum hardware to reconstruct random unknown single qubit states, illustrating the practical performance of our framework. For a certain reconstructing fidelity, our method can effectively construct a PQC of suitable length, avoiding barren plateaus of shadow circuits and overuse of quantum resources by deep circuits, which is of much significance when the scale of the target state is large and there is no a priori information on it. This advantage indicates that it can learn credible information of unknown states with limited quantum resources, giving a boost to quantum algorithms based on parameterized circuits on near-term quantum processors.
引用
收藏
页数:12
相关论文
共 54 条
[1]   Measurement-based adaptation protocol with quantum reinforcement learning [J].
Albarran-Arriagada, F. ;
Retamal, J. C. ;
Solano, E. ;
Lamata, L. .
PHYSICAL REVIEW A, 2018, 98 (04)
[2]  
[Anonymous], 2019, QISKIT OPEN SOURCE F
[3]  
[Anonymous], 2021, IBM QUANTUM
[4]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[5]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[6]  
Bennett C. H., 1984, P IEEE INT C COMP SY, P175, DOI DOI 10.1016/J.TCS.2014.05.025
[7]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[8]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[9]  
Bravo-Prieto C., 2019, ARXIV190905820QUANPH
[10]  
Broughton M, 2020, ARXIV200302989QUANTP